Yinggang Song, Jingkai Bi, Yuki Nakamoto, Katsuya Shimizu, Hanyu Liu, Bo Zou, Guangtao Liu, Hongbo Wang, Yanming Ma
{"title":"Stoichiometric Ternary Superhydride LaBeH_{8} as a New Template for High-Temperature Superconductivity at 110 K under 80 GPa.","authors":"Yinggang Song, Jingkai Bi, Yuki Nakamoto, Katsuya Shimizu, Hanyu Liu, Bo Zou, Guangtao Liu, Hongbo Wang, Yanming Ma","doi":"10.1103/PhysRevLett.130.266001","DOIUrl":null,"url":null,"abstract":"<p><p>The search for high-temperature superconducting superhydrides has recently moved into a new phase by going beyond extensively probed binary compounds and focusing on ternary ones with vastly expanded material types and configurations for property optimization. Theoretical and experimental works have revealed promising ternary compounds that superconduct at or above room temperature, but it remains a pressing challenge to synthesize stoichiometric ternary compounds with a well-resolved crystal structure that can host high-temperature superconductivity at submegabar pressures. Here, we report on the successful synthesis of ternary LaBeH_{8} obtained via compression in a diamond anvil cell under 110-130 GPa. X-ray diffraction unveils a rocksalt-like structure composing La and BeH_{8} units in the lattice. Transport measurements determined superconductivity with critical temperature T_{c} up to 110 K at 80 GPa, as evidenced by a sharp drop of resistivity to zero and a characteristic shift of T_{c} driven by a magnetic field. Our experiment establishes the first superconductive ternary compound with a resolved crystal structure. These findings raise the prospects of rational development of the class of high-T_{c} superhydrides among ternary compounds, opening greatly expanded and more diverse structural space for exploration and discovery of superhydrides with enhanced high-T_{c} superconductivity.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"130 26","pages":"266001"},"PeriodicalIF":9.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.130.266001","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11
Abstract
The search for high-temperature superconducting superhydrides has recently moved into a new phase by going beyond extensively probed binary compounds and focusing on ternary ones with vastly expanded material types and configurations for property optimization. Theoretical and experimental works have revealed promising ternary compounds that superconduct at or above room temperature, but it remains a pressing challenge to synthesize stoichiometric ternary compounds with a well-resolved crystal structure that can host high-temperature superconductivity at submegabar pressures. Here, we report on the successful synthesis of ternary LaBeH_{8} obtained via compression in a diamond anvil cell under 110-130 GPa. X-ray diffraction unveils a rocksalt-like structure composing La and BeH_{8} units in the lattice. Transport measurements determined superconductivity with critical temperature T_{c} up to 110 K at 80 GPa, as evidenced by a sharp drop of resistivity to zero and a characteristic shift of T_{c} driven by a magnetic field. Our experiment establishes the first superconductive ternary compound with a resolved crystal structure. These findings raise the prospects of rational development of the class of high-T_{c} superhydrides among ternary compounds, opening greatly expanded and more diverse structural space for exploration and discovery of superhydrides with enhanced high-T_{c} superconductivity.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks