Dominik Rößle, Lukas Prey, Ludwig Ramgraber, Anja Hanemann, Daniel Cremers, Patrick Ole Noack, Torsten Schön
{"title":"Efficient Noninvasive FHB Estimation using RGB Images from a Novel Multiyear, Multirater Dataset.","authors":"Dominik Rößle, Lukas Prey, Ludwig Ramgraber, Anja Hanemann, Daniel Cremers, Patrick Ole Noack, Torsten Schön","doi":"10.34133/plantphenomics.0068","DOIUrl":null,"url":null,"abstract":"<p><p><i>Fusarium</i> head blight (FHB) is one of the most prevalent wheat diseases, causing substantial yield losses and health risks. Efficient phenotyping of FHB is crucial for accelerating resistance breeding, but currently used methods are time-consuming and expensive. The present article suggests a noninvasive classification model for FHB severity estimation using red-green-blue (RGB) images, without requiring extensive preprocessing. The model accepts images taken from consumer-grade, low-cost RGB cameras and classifies the FHB severity into 6 ordinal levels. In addition, we introduce a novel dataset consisting of around 3,000 images from 3 different years (2020, 2021, and 2022) and 2 FHB severity assessments per image from independent raters. We used a pretrained EfficientNet (size b0), redesigned as a regression model. The results demonstrate that the interrater reliability (Cohen's kappa, <i>κ</i>) is substantially lower than the achieved individual network-to-rater results, e.g., 0.68 and 0.76 for the data captured in 2020, respectively. The model shows a generalization effect when trained with data from multiple years and tested on data from an independent year. Thus, using the images from 2020 and 2021 for training and 2022 for testing, we improved the <math><msubsup><mi>F</mi><mn>1</mn><mi>w</mi></msubsup></math> score by 0.14, the accuracy by 0.11, <i>κ</i> by 0.12, and reduced the root mean squared error by 0.5 compared to the best network trained only on a single year's data. The proposed lightweight model and methods could be deployed on mobile devices to automatically and objectively assess FHB severity with images from low-cost RGB cameras. The source code and the dataset are available at https://github.com/cvims/FHB_classification.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"5 ","pages":"0068"},"PeriodicalIF":7.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10348660/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0068","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 1
Abstract
Fusarium head blight (FHB) is one of the most prevalent wheat diseases, causing substantial yield losses and health risks. Efficient phenotyping of FHB is crucial for accelerating resistance breeding, but currently used methods are time-consuming and expensive. The present article suggests a noninvasive classification model for FHB severity estimation using red-green-blue (RGB) images, without requiring extensive preprocessing. The model accepts images taken from consumer-grade, low-cost RGB cameras and classifies the FHB severity into 6 ordinal levels. In addition, we introduce a novel dataset consisting of around 3,000 images from 3 different years (2020, 2021, and 2022) and 2 FHB severity assessments per image from independent raters. We used a pretrained EfficientNet (size b0), redesigned as a regression model. The results demonstrate that the interrater reliability (Cohen's kappa, κ) is substantially lower than the achieved individual network-to-rater results, e.g., 0.68 and 0.76 for the data captured in 2020, respectively. The model shows a generalization effect when trained with data from multiple years and tested on data from an independent year. Thus, using the images from 2020 and 2021 for training and 2022 for testing, we improved the score by 0.14, the accuracy by 0.11, κ by 0.12, and reduced the root mean squared error by 0.5 compared to the best network trained only on a single year's data. The proposed lightweight model and methods could be deployed on mobile devices to automatically and objectively assess FHB severity with images from low-cost RGB cameras. The source code and the dataset are available at https://github.com/cvims/FHB_classification.
期刊介绍:
Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals.
The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics.
The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.