{"title":"Self-aggregation behavior of dimeric chlorophyll-a derivatives linked with ethynylene and m-phenylene moieties.","authors":"Yuma Hisahara, Takeo Nakano, Hitoshi Tamiaki","doi":"10.1007/s43630-023-00454-w","DOIUrl":null,"url":null,"abstract":"<p><p>Chlorophyll(Chl)-a derivatives inserting an ethynylene-m-phenylene group between a zinc chlorin ring and a hydroxymethyl group, in which various substituents were introduced on the benzene spacer, were prepared as model compounds for the light-harvesting antennae (chlorosomes) of photosynthetic green bacteria. These compounds were synthesized from a C3-ethynylated Chl-a derivative via sequential Sonogashira cross-coupling reaction, and the effects of the substituents on the phenylene linker on their self-aggregation behaviors were investigated by electronic absorption, circular dichroism, and infrared absorption spectroscopic measurements. These studies exhibited that some compounds gave the disordered self-assemblies including several species; however, the zinc complex of the dimeric Chl-a derivative primarily allowed a single J-aggregate species in an aqueous Triton X-100 micellar solution. Additional control experiments revealed that its self-assembly was constructed through the hydrogen and coordination bonding involving the hydroxymethyl group on benzene ring, keto-carbonyl group at C13-position, and central zinc atom, and this is consistent with a conventional chlorosomal manner.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":"2329-2339"},"PeriodicalIF":3.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemical & Photobiological Sciences","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s43630-023-00454-w","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chlorophyll(Chl)-a derivatives inserting an ethynylene-m-phenylene group between a zinc chlorin ring and a hydroxymethyl group, in which various substituents were introduced on the benzene spacer, were prepared as model compounds for the light-harvesting antennae (chlorosomes) of photosynthetic green bacteria. These compounds were synthesized from a C3-ethynylated Chl-a derivative via sequential Sonogashira cross-coupling reaction, and the effects of the substituents on the phenylene linker on their self-aggregation behaviors were investigated by electronic absorption, circular dichroism, and infrared absorption spectroscopic measurements. These studies exhibited that some compounds gave the disordered self-assemblies including several species; however, the zinc complex of the dimeric Chl-a derivative primarily allowed a single J-aggregate species in an aqueous Triton X-100 micellar solution. Additional control experiments revealed that its self-assembly was constructed through the hydrogen and coordination bonding involving the hydroxymethyl group on benzene ring, keto-carbonyl group at C13-position, and central zinc atom, and this is consistent with a conventional chlorosomal manner.