Auto-Segmentation and Classification of Glioma Tumors with the Goals of Treatment Response Assessment Using Deep Learning Based on Magnetic Resonance Imaging.
IF 2.7 4区 医学Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Zahra Papi, Sina Fathi, Fatemeh Dalvand, Mahsa Vali, Ali Yousefi, Mohammad Hemmatyar Tabatabaei, Alireza Amouheidari, Iraj Abedi
{"title":"Auto-Segmentation and Classification of Glioma Tumors with the Goals of Treatment Response Assessment Using Deep Learning Based on Magnetic Resonance Imaging.","authors":"Zahra Papi, Sina Fathi, Fatemeh Dalvand, Mahsa Vali, Ali Yousefi, Mohammad Hemmatyar Tabatabaei, Alireza Amouheidari, Iraj Abedi","doi":"10.1007/s12021-023-09640-8","DOIUrl":null,"url":null,"abstract":"<p><p>Glioma is the most common primary intracranial neoplasm in adults. Radiotherapy is a treatment approach in glioma patients, and Magnetic Resonance Imaging (MRI) is a beneficial diagnostic tool in treatment planning. Treatment response assessment in glioma patients is usually based on the Response Assessment in Neuro Oncology (RANO) criteria. The limitation of assessment based on RANO is two-dimensional (2D) manual measurements. Deep learning (DL) has great potential in neuro-oncology to improve the accuracy of response assessment. In the current research, firstly, the BraTS 2018 Challenge dataset included 210 HGG and 75 LGG were applied to train a designed U-Net network for automatic tumor and intra-tumoral segmentation, followed by training of the designed classifier with transfer learning for determining grading HGG and LGG. Then, designed networks were employed for the segmentation and classification of local MRI images of 49 glioma patients pre and post-radiotherapy. The results of tumor segmentation and its intra-tumoral regions were utilized to determine the volume of different regions and treatment response assessment. Treatment response assessment demonstrated that radiotherapy is effective on the whole tumor and enhancing region with p-value ≤ 0.05 with a 95% confidence level, while it did not affect necrosis and peri-tumoral edema regions. This work demonstrated the potential of using deep learning in MRI images to provide a beneficial tool in the automated treatment response assessment so that the patient can obtain the best treatment.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":" ","pages":"641-650"},"PeriodicalIF":2.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-023-09640-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Glioma is the most common primary intracranial neoplasm in adults. Radiotherapy is a treatment approach in glioma patients, and Magnetic Resonance Imaging (MRI) is a beneficial diagnostic tool in treatment planning. Treatment response assessment in glioma patients is usually based on the Response Assessment in Neuro Oncology (RANO) criteria. The limitation of assessment based on RANO is two-dimensional (2D) manual measurements. Deep learning (DL) has great potential in neuro-oncology to improve the accuracy of response assessment. In the current research, firstly, the BraTS 2018 Challenge dataset included 210 HGG and 75 LGG were applied to train a designed U-Net network for automatic tumor and intra-tumoral segmentation, followed by training of the designed classifier with transfer learning for determining grading HGG and LGG. Then, designed networks were employed for the segmentation and classification of local MRI images of 49 glioma patients pre and post-radiotherapy. The results of tumor segmentation and its intra-tumoral regions were utilized to determine the volume of different regions and treatment response assessment. Treatment response assessment demonstrated that radiotherapy is effective on the whole tumor and enhancing region with p-value ≤ 0.05 with a 95% confidence level, while it did not affect necrosis and peri-tumoral edema regions. This work demonstrated the potential of using deep learning in MRI images to provide a beneficial tool in the automated treatment response assessment so that the patient can obtain the best treatment.
期刊介绍:
Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.