Qiao Tang, Zhiwei Chen, Hu Li, Li Zhang, Mingli Peng, Yi Zeng, Xiaoqing Liu, Zubi Liu, Peng Hu
{"title":"Molecular epidemiology of hepatitis C virus genotypes in different geographical regions of Chinese mainland and a phylogenetic analysis.","authors":"Qiao Tang, Zhiwei Chen, Hu Li, Li Zhang, Mingli Peng, Yi Zeng, Xiaoqing Liu, Zubi Liu, Peng Hu","doi":"10.1186/s40249-023-01106-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hepatitis C virus (HCV) infection remains a major public health problem in Chinese mainland. Investigation of the distribution of genotypes contributed to the prevention, diagnosis and treatment of HCV infection. Therefore, we conducted a study on the distribution of HCV genotypes and phylogenetic analysis to provide an up-to-date understanding of the molecular epidemiology of genotypes in Chinese mainland.</p><p><strong>Methods: </strong>Our retrospective multicenter study enrolled 11,008 samples collected between August 2018 and July 2019 from 29 provinces/municipalities (Beijing, Hebei, Inner Mongolia, Shanxi, Tianjin, Gansu, Ningxia, Shaanxi, Xinjiang, Heilongjiang, Jilin Liaoning, Henan, Hubei Hunan, Anhui, Fujian, Jiangsu, Jiangxi, Shandong, Shanghai Zhejiang, Guangdong, Guangxi, Hainan, Chongqing, Guizhou, Sichuan and Yunnan). Phylogenetic analysis of each subtype was performed to infer the evolutionary relationship of sequences from diverse regions. Two independent samples t tests were used for the comparison of continuous variables, and chi-square tests were used for the comparison of categorical variables.</p><p><strong>Results: </strong>Four genotypes (1, 2, 3 and 6) were found, including 14 subtypes. HCV genotype 1 was dominant, accounting for 49.2%, followed by genotypes 2, 3 and 6, accounting for 22.4%, 16.4%, and 11.9%, respectively. Additionally, the top five subtypes were 1b, 2a, 3b, 6a and 3a. Proportions of genotypes 1 and 2 decreased while genotypes 3 and 6 increased over past years (P < 0.001). Genotypes 3 and 6 were concentrated in the population aged 30 to 50 years, and male carriers had lower proportions of subtypes 1b and 2a than female carriers (P < 0.01). Genotypes 3 and 6 were more prevalent in southern parts of Chinese mainland. Nationwide spreads of subtypes 1b and 2a were associated with sequences from northern parts of Chinese mainland, while subtypes 3a, 3b and 6a were associated with sequences from southern parts of Chinese mainland.</p><p><strong>Conclusions: </strong>HCV subtypes 1b and 2a remained the most common subtypes in Chinese mainland, and their proportions decreased over the past years, while the proportions of genotypes 3 and 6 increased. Our investigation provided an accurate epidemiological picture of the circulating viral strains in Chinese mainland, contributing to the prevention, diagnosis and treatment of HCV infection.</p><p><strong>Trial registration: </strong>Not applicable.</p>","PeriodicalId":48820,"journal":{"name":"Infectious Diseases of Poverty","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10331966/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious Diseases of Poverty","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40249-023-01106-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Hepatitis C virus (HCV) infection remains a major public health problem in Chinese mainland. Investigation of the distribution of genotypes contributed to the prevention, diagnosis and treatment of HCV infection. Therefore, we conducted a study on the distribution of HCV genotypes and phylogenetic analysis to provide an up-to-date understanding of the molecular epidemiology of genotypes in Chinese mainland.
Methods: Our retrospective multicenter study enrolled 11,008 samples collected between August 2018 and July 2019 from 29 provinces/municipalities (Beijing, Hebei, Inner Mongolia, Shanxi, Tianjin, Gansu, Ningxia, Shaanxi, Xinjiang, Heilongjiang, Jilin Liaoning, Henan, Hubei Hunan, Anhui, Fujian, Jiangsu, Jiangxi, Shandong, Shanghai Zhejiang, Guangdong, Guangxi, Hainan, Chongqing, Guizhou, Sichuan and Yunnan). Phylogenetic analysis of each subtype was performed to infer the evolutionary relationship of sequences from diverse regions. Two independent samples t tests were used for the comparison of continuous variables, and chi-square tests were used for the comparison of categorical variables.
Results: Four genotypes (1, 2, 3 and 6) were found, including 14 subtypes. HCV genotype 1 was dominant, accounting for 49.2%, followed by genotypes 2, 3 and 6, accounting for 22.4%, 16.4%, and 11.9%, respectively. Additionally, the top five subtypes were 1b, 2a, 3b, 6a and 3a. Proportions of genotypes 1 and 2 decreased while genotypes 3 and 6 increased over past years (P < 0.001). Genotypes 3 and 6 were concentrated in the population aged 30 to 50 years, and male carriers had lower proportions of subtypes 1b and 2a than female carriers (P < 0.01). Genotypes 3 and 6 were more prevalent in southern parts of Chinese mainland. Nationwide spreads of subtypes 1b and 2a were associated with sequences from northern parts of Chinese mainland, while subtypes 3a, 3b and 6a were associated with sequences from southern parts of Chinese mainland.
Conclusions: HCV subtypes 1b and 2a remained the most common subtypes in Chinese mainland, and their proportions decreased over the past years, while the proportions of genotypes 3 and 6 increased. Our investigation provided an accurate epidemiological picture of the circulating viral strains in Chinese mainland, contributing to the prevention, diagnosis and treatment of HCV infection.
期刊介绍:
Infectious Diseases of Poverty is an open access, peer-reviewed journal that focuses on addressing essential public health questions related to infectious diseases of poverty. The journal covers a wide range of topics including the biology of pathogens and vectors, diagnosis and detection, treatment and case management, epidemiology and modeling, zoonotic hosts and animal reservoirs, control strategies and implementation, new technologies and application. It also considers the transdisciplinary or multisectoral effects on health systems, ecohealth, environmental management, and innovative technology. The journal aims to identify and assess research and information gaps that hinder progress towards new interventions for public health problems in the developing world. Additionally, it provides a platform for discussing these issues to advance research and evidence building for improved public health interventions in poor settings.