Sepiedeh Keshavarzi, Mateo Velez-Fort, Troy W Margrie
{"title":"Cortical Integration of Vestibular and Visual Cues for Navigation, Visual Processing, and Perception.","authors":"Sepiedeh Keshavarzi, Mateo Velez-Fort, Troy W Margrie","doi":"10.1146/annurev-neuro-120722-100503","DOIUrl":null,"url":null,"abstract":"<p><p>Despite increasing evidence of its involvement in several key functions of the cerebral cortex, the vestibular sense rarely enters our consciousness. Indeed, the extent to which these internal signals are incorporated within cortical sensory representation and how they might be relied upon for sensory-driven decision-making, during, for example, spatial navigation, is yet to be understood. Recent novel experimental approaches in rodents have probed both the physiological and behavioral significance of vestibular signals and indicate that their widespread integration with vision improves both the cortical representation and perceptual accuracy of self-motion and orientation. Here, we summarize these recent findings with a focus on cortical circuits involved in visual perception and spatial navigation and highlight the major remaining knowledge gaps. We suggest that vestibulo-visual integration reflects a process of constant updating regarding the status of self-motion, and access to such information by the cortex is used for sensory perception and predictions that may be implemented for rapid, navigation-related decision-making.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"46 ","pages":"301-320"},"PeriodicalIF":12.1000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616138/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-neuro-120722-100503","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Despite increasing evidence of its involvement in several key functions of the cerebral cortex, the vestibular sense rarely enters our consciousness. Indeed, the extent to which these internal signals are incorporated within cortical sensory representation and how they might be relied upon for sensory-driven decision-making, during, for example, spatial navigation, is yet to be understood. Recent novel experimental approaches in rodents have probed both the physiological and behavioral significance of vestibular signals and indicate that their widespread integration with vision improves both the cortical representation and perceptual accuracy of self-motion and orientation. Here, we summarize these recent findings with a focus on cortical circuits involved in visual perception and spatial navigation and highlight the major remaining knowledge gaps. We suggest that vestibulo-visual integration reflects a process of constant updating regarding the status of self-motion, and access to such information by the cortex is used for sensory perception and predictions that may be implemented for rapid, navigation-related decision-making.
期刊介绍:
The Annual Review of Neuroscience is a well-established and comprehensive journal in the field of neuroscience, with a rich history and a commitment to open access and scholarly communication. The journal has been in publication since 1978, providing a long-standing source of authoritative reviews in neuroscience.
The Annual Review of Neuroscience encompasses a wide range of topics within neuroscience, including but not limited to: Molecular and cellular neuroscience, Neurogenetics, Developmental neuroscience, Neural plasticity and repair, Systems neuroscience, Cognitive neuroscience, Behavioral neuroscience, Neurobiology of disease. Occasionally, the journal also features reviews on the history of neuroscience and ethical considerations within the field.