{"title":"Theoretical study of electronic sum frequency generation spectroscopy to assess the buried interfaces.","authors":"Yogesh Kumar, Suman Dhami, Ravindra Pandey","doi":"10.1116/6.0002698","DOIUrl":null,"url":null,"abstract":"<p><p>This article provides a comprehensive theoretical background of electronic sum frequency generation (ESFG), a second-order nonlinear spectroscopy technique. ESFG is utilized to investigate both exposed and buried interfaces, which are challenging to study using conventional spectroscopic methods. By overlapping two incident beams at the interface, ESFG generates a beam at the sum of their frequencies, allowing for the extraction of valuable interfacial molecular information such as molecular orientation and density of states present at interfaces. The unique surface selectivity of ESFG arises from the absence of inversion symmetry at the interfaces. However, detecting weak signals from interfaces requires the ultrafast lasers to generate a sufficiently strong signal. By understanding the theoretical foundations of ESFG presented in this article, readers can gain a solid grasp of the basics of ESFG spectroscopy.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0002698","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 2
Abstract
This article provides a comprehensive theoretical background of electronic sum frequency generation (ESFG), a second-order nonlinear spectroscopy technique. ESFG is utilized to investigate both exposed and buried interfaces, which are challenging to study using conventional spectroscopic methods. By overlapping two incident beams at the interface, ESFG generates a beam at the sum of their frequencies, allowing for the extraction of valuable interfacial molecular information such as molecular orientation and density of states present at interfaces. The unique surface selectivity of ESFG arises from the absence of inversion symmetry at the interfaces. However, detecting weak signals from interfaces requires the ultrafast lasers to generate a sufficiently strong signal. By understanding the theoretical foundations of ESFG presented in this article, readers can gain a solid grasp of the basics of ESFG spectroscopy.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.