Weizhao Lu, Yanhua Duan, Kun Li, Jianfeng Qiu, Zhaoping Cheng
{"title":"Glucose uptake and distribution across the human skeleton using state-of-the-art total-body PET/CT.","authors":"Weizhao Lu, Yanhua Duan, Kun Li, Jianfeng Qiu, Zhaoping Cheng","doi":"10.1038/s41413-023-00268-7","DOIUrl":null,"url":null,"abstract":"<p><p>A growing number of studies have demonstrated that the skeleton is an endocrine organ that is involved in glucose metabolism and plays a significant role in human glucose homeostasis. However, there is still a limited understanding of the in vivo glucose uptake and distribution across the human skeleton. To address this issue, we aimed to elucidate the detailed profile of glucose uptake across the skeleton using a total-body positron emission tomography (PET) scanner. A total of 41 healthy participants were recruited. Two of them received a 1-hour dynamic total-body <sup>18</sup>F-fluorodeoxyglucose (<sup>18</sup>F-FDG) PET scan, and all of them received a 10-minute static total-body <sup>18</sup>F-FDG PET scan. The net influx rate (K<sub>i</sub>) and standardized uptake value normalized by lean body mass (SUL) were calculated as indicators of glucose uptake from the dynamic and static PET data, respectively. The results showed that the vertebrae, hip bone and skull had relatively high K<sub>i</sub> and SUL values compared with metabolic organs such as the liver. Both the K<sub>i</sub> and SUL were higher in the epiphyseal, metaphyseal and cortical regions of long bones. Moreover, trends associated with age and overweight with glucose uptake (SUL<sub>max</sub> and SUL<sub>mean</sub>) in bones were uncovered. Overall, these results indicate that the skeleton is a site with significant glucose uptake, and skeletal glucose uptake can be affected by age and dysregulated metabolism.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"11 1","pages":"36"},"PeriodicalIF":14.3000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10322940/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41413-023-00268-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
A growing number of studies have demonstrated that the skeleton is an endocrine organ that is involved in glucose metabolism and plays a significant role in human glucose homeostasis. However, there is still a limited understanding of the in vivo glucose uptake and distribution across the human skeleton. To address this issue, we aimed to elucidate the detailed profile of glucose uptake across the skeleton using a total-body positron emission tomography (PET) scanner. A total of 41 healthy participants were recruited. Two of them received a 1-hour dynamic total-body 18F-fluorodeoxyglucose (18F-FDG) PET scan, and all of them received a 10-minute static total-body 18F-FDG PET scan. The net influx rate (Ki) and standardized uptake value normalized by lean body mass (SUL) were calculated as indicators of glucose uptake from the dynamic and static PET data, respectively. The results showed that the vertebrae, hip bone and skull had relatively high Ki and SUL values compared with metabolic organs such as the liver. Both the Ki and SUL were higher in the epiphyseal, metaphyseal and cortical regions of long bones. Moreover, trends associated with age and overweight with glucose uptake (SULmax and SULmean) in bones were uncovered. Overall, these results indicate that the skeleton is a site with significant glucose uptake, and skeletal glucose uptake can be affected by age and dysregulated metabolism.
期刊介绍:
Established in 2013, Bone Research is a newly-founded English-language periodical that centers on the basic and clinical facets of bone biology, pathophysiology, and regeneration. It is dedicated to championing key findings emerging from both basic investigations and clinical research concerning bone-related topics. The journal's objective is to globally disseminate research in bone-related physiology, pathology, diseases, and treatment, contributing to the advancement of knowledge in this field.