Xingyu Zhao, Ruowen Zhang, Zitong Song, Kun Yang, Han He, Lianhai Jin, Wei Zhang
{"title":"Curcumin suppressed the proliferation and apoptosis of HPV-positive cervical cancer cells by directly targeting the E6 protein.","authors":"Xingyu Zhao, Ruowen Zhang, Zitong Song, Kun Yang, Han He, Lianhai Jin, Wei Zhang","doi":"10.1002/ptr.7868","DOIUrl":null,"url":null,"abstract":"<p><p>Most human papillomavirus (HPV) types, including HPV16 and HPV18, are closely related to the occurrence of cervical cancer, predominantly through the action of viral oncoproteins E6 and E7. Curcumin, the active ingredient of the turmeric plant, has been gaining attention over the past two decades as an antioxidant, anti-inflammatory, and anticancer agent. In the present study, the HPV-positive cervical cancer cells HeLa and CaSki were treated with curcumin, and the results showed that curcumin has a dose-dependent and time-dependent inhibitory effect on cell viability. In addition, apoptosis induction was further quantitatively confirmed through flow cytometric analysis. Furthermore, the influence of different concentrations of curcumin on the mitochondrial membrane potential was evaluated through JC-1 staining and found to dramatically decrease the membrane potential in treated HeLa and CaSki cells, suggesting the critical role of the mitochondrial pathway in their apoptosis-inducing effect. This study also demonstrated the wound-healing potential of curcumin, and the results of transwell assays showed that curcumin treatment inhibited HeLa and CaSki cell invasion and migration in a dose-dependent manner compared with the control treatment. Curcumin also downregulated the expression of Bcl-2, N-cadherin, and Vimentin and upregulated the expression of Bax, C-caspase-3, and E-cadherin in both cell lines. Further research showed that curcumin also selectively inhibited the expression of the viral oncoproteins E6 and E7, as demonstrated by western blot analysis; moreover, the downregulation of E6 was more significant than that of E7. Our research also showed that coculture with cells infected with siE6 lentivirus (siE6 cells) can inhibit the proliferation, invasion, and metastasis of HPV-positive cells. While the siE6 cells were also treated with curcumin, the effect of curcumin monotherapy was offset. In summary, our research shows that curcumin regulates the apoptosis, migration, and invasion of cervical cancer cells, and the mechanism may be related to its ability to downregulate E6. This study provides a foundation for future research on the prevention and treatment of cervical cancer.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":"4967-4981"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ptr.7868","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Most human papillomavirus (HPV) types, including HPV16 and HPV18, are closely related to the occurrence of cervical cancer, predominantly through the action of viral oncoproteins E6 and E7. Curcumin, the active ingredient of the turmeric plant, has been gaining attention over the past two decades as an antioxidant, anti-inflammatory, and anticancer agent. In the present study, the HPV-positive cervical cancer cells HeLa and CaSki were treated with curcumin, and the results showed that curcumin has a dose-dependent and time-dependent inhibitory effect on cell viability. In addition, apoptosis induction was further quantitatively confirmed through flow cytometric analysis. Furthermore, the influence of different concentrations of curcumin on the mitochondrial membrane potential was evaluated through JC-1 staining and found to dramatically decrease the membrane potential in treated HeLa and CaSki cells, suggesting the critical role of the mitochondrial pathway in their apoptosis-inducing effect. This study also demonstrated the wound-healing potential of curcumin, and the results of transwell assays showed that curcumin treatment inhibited HeLa and CaSki cell invasion and migration in a dose-dependent manner compared with the control treatment. Curcumin also downregulated the expression of Bcl-2, N-cadherin, and Vimentin and upregulated the expression of Bax, C-caspase-3, and E-cadherin in both cell lines. Further research showed that curcumin also selectively inhibited the expression of the viral oncoproteins E6 and E7, as demonstrated by western blot analysis; moreover, the downregulation of E6 was more significant than that of E7. Our research also showed that coculture with cells infected with siE6 lentivirus (siE6 cells) can inhibit the proliferation, invasion, and metastasis of HPV-positive cells. While the siE6 cells were also treated with curcumin, the effect of curcumin monotherapy was offset. In summary, our research shows that curcumin regulates the apoptosis, migration, and invasion of cervical cancer cells, and the mechanism may be related to its ability to downregulate E6. This study provides a foundation for future research on the prevention and treatment of cervical cancer.
期刊介绍:
Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field.
Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters.
By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.