Chemoprevention of lotus leaf ethanolic extract through epigenetic activation of the NRF2-mediated pathway in murine skin JB6 P+ cell neoplastic transformation
IF 4.3 3区 材料科学Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yen-Chen Tung , Ping-Hua Sung , Pei-Chun Chen , Hsiao Chi Wang , Jong Hun Lee , Zheng-Yuan Su
{"title":"Chemoprevention of lotus leaf ethanolic extract through epigenetic activation of the NRF2-mediated pathway in murine skin JB6 P+ cell neoplastic transformation","authors":"Yen-Chen Tung , Ping-Hua Sung , Pei-Chun Chen , Hsiao Chi Wang , Jong Hun Lee , Zheng-Yuan Su","doi":"10.1016/j.jtcme.2023.02.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and aim</h3><p>Skin is one barrier protecting from environmental risk factors that can make skin cells cancerous through DNA damage and oxidative stress. The nuclear factor erythroid 2-related factor 2 (NRF2) pathway is an anti-stress defense system that can be regulated by DNA methylation and histone modification. Dietary phytochemicals have chemopreventive properties that can inhibit or delay carcinogenesis. The lotus leaf is a traditional medicinal plant containing many polyphenols whose extracts show many biological activities, including antioxidant, anti-obesity, and anti-cancer. This study aim to investigate the effect of lotus leaves on neoplastic transformation in murine skin JB6 P+ cells.</p></div><div><h3>Experimental procedure</h3><p>Lotus leaves were extracted with water (LL-WE) and ethanol (LL-EE), and the LL-WE residues were further extracted with ethanol (LL-WREE). JB6 P+ cells were treated with different extracts. The chemoprotective effect would be evaluated by heme oxygenase 1 (HO-1), NAD(P)H quinone oxidoreductase (NQO1), and UDP glucuronosyltransferase family 1 member A1 (UGT1A1) expression.</p></div><div><h3>Results and conclusion</h3><p>LL-EE contained higher total phenolics and quercetin among extracts. In mouse skin JB6 P+ cells with 12-<em>O</em>-tetradecanoylphorbol-13-acetate treatment, LL-EE showed the greatest potential to suppress skin carcinogenesis. LL-EE activated the NRF2 pathway by upregulating antioxidant and detoxification enzymes upregulates antioxidant and detoxification enzymes, including HO-1, NQO1, and UGT1A1, and downregulates DNA methylation, which might be caused by lower DNA methyltransferase and histone deacetylase levels. Therefore, our results show that LL-EE reduces the neoplastic transformation of skin JB6 P+ cells, potentially by activating the NRF2 pathway and regulating epigenetic DNA methylation and histone acetylation.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/77/ec/main.PMC10310861.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225411023000160","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
Background and aim
Skin is one barrier protecting from environmental risk factors that can make skin cells cancerous through DNA damage and oxidative stress. The nuclear factor erythroid 2-related factor 2 (NRF2) pathway is an anti-stress defense system that can be regulated by DNA methylation and histone modification. Dietary phytochemicals have chemopreventive properties that can inhibit or delay carcinogenesis. The lotus leaf is a traditional medicinal plant containing many polyphenols whose extracts show many biological activities, including antioxidant, anti-obesity, and anti-cancer. This study aim to investigate the effect of lotus leaves on neoplastic transformation in murine skin JB6 P+ cells.
Experimental procedure
Lotus leaves were extracted with water (LL-WE) and ethanol (LL-EE), and the LL-WE residues were further extracted with ethanol (LL-WREE). JB6 P+ cells were treated with different extracts. The chemoprotective effect would be evaluated by heme oxygenase 1 (HO-1), NAD(P)H quinone oxidoreductase (NQO1), and UDP glucuronosyltransferase family 1 member A1 (UGT1A1) expression.
Results and conclusion
LL-EE contained higher total phenolics and quercetin among extracts. In mouse skin JB6 P+ cells with 12-O-tetradecanoylphorbol-13-acetate treatment, LL-EE showed the greatest potential to suppress skin carcinogenesis. LL-EE activated the NRF2 pathway by upregulating antioxidant and detoxification enzymes upregulates antioxidant and detoxification enzymes, including HO-1, NQO1, and UGT1A1, and downregulates DNA methylation, which might be caused by lower DNA methyltransferase and histone deacetylase levels. Therefore, our results show that LL-EE reduces the neoplastic transformation of skin JB6 P+ cells, potentially by activating the NRF2 pathway and regulating epigenetic DNA methylation and histone acetylation.