Robert H Lyles, Yuzi Zhang, Lin Ge, Cameron England, Kevin Ward, Timothy L Lash, Lance A Waller
{"title":"Using Capture-Recapture Methodology to Enhance Precision of Representative Sampling-Based Case Count Estimates.","authors":"Robert H Lyles, Yuzi Zhang, Lin Ge, Cameron England, Kevin Ward, Timothy L Lash, Lance A Waller","doi":"10.1093/jssam/smab052","DOIUrl":null,"url":null,"abstract":"<p><p>The application of serial principled sampling designs for diagnostic testing is often viewed as an ideal approach to monitoring prevalence and case counts of infectious or chronic diseases. Considering logistics and the need for timeliness and conservation of resources, surveillance efforts can generally benefit from creative designs and accompanying statistical methods to improve the precision of sampling-based estimates and reduce the size of the necessary sample. One option is to augment the analysis with available data from other surveillance streams that identify cases from the population of interest over the same timeframe, but may do so in a highly nonrepresentative manner. We consider monitoring a closed population (e.g., a long-term care facility, patient registry, or community), and encourage the use of capture-recapture methodology to produce an alternative case total estimate to the one obtained by principled sampling. With care in its implementation, even a relatively small simple or stratified random sample not only provides its own valid estimate, but provides the only fully defensible means of justifying a second estimate based on classical capture-recapture methods. We initially propose weighted averaging of the two estimators to achieve greater precision than can be obtained using either alone, and then show how a novel single capture-recapture estimator provides a unified and preferable alternative. We develop a variant on a Dirichlet-multinomial-based credible interval to accompany our hybrid design-based case count estimates, with a view toward improved coverage properties. Finally, we demonstrate the benefits of the approach through simulations designed to mimic an acute infectious disease daily monitoring program or an annual surveillance program to quantify new cases within a fixed patient registry.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9643167/pdf/smab052.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jssam/smab052","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
The application of serial principled sampling designs for diagnostic testing is often viewed as an ideal approach to monitoring prevalence and case counts of infectious or chronic diseases. Considering logistics and the need for timeliness and conservation of resources, surveillance efforts can generally benefit from creative designs and accompanying statistical methods to improve the precision of sampling-based estimates and reduce the size of the necessary sample. One option is to augment the analysis with available data from other surveillance streams that identify cases from the population of interest over the same timeframe, but may do so in a highly nonrepresentative manner. We consider monitoring a closed population (e.g., a long-term care facility, patient registry, or community), and encourage the use of capture-recapture methodology to produce an alternative case total estimate to the one obtained by principled sampling. With care in its implementation, even a relatively small simple or stratified random sample not only provides its own valid estimate, but provides the only fully defensible means of justifying a second estimate based on classical capture-recapture methods. We initially propose weighted averaging of the two estimators to achieve greater precision than can be obtained using either alone, and then show how a novel single capture-recapture estimator provides a unified and preferable alternative. We develop a variant on a Dirichlet-multinomial-based credible interval to accompany our hybrid design-based case count estimates, with a view toward improved coverage properties. Finally, we demonstrate the benefits of the approach through simulations designed to mimic an acute infectious disease daily monitoring program or an annual surveillance program to quantify new cases within a fixed patient registry.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.