Application of text mining to the development and validation of a geographic search filter to facilitate evidence retrieval in Ovid MEDLINE: An example from the United States
Antoinette Cheung MPH, Evan Popoff MSc, Shelagh M. Szabo MSc
{"title":"Application of text mining to the development and validation of a geographic search filter to facilitate evidence retrieval in Ovid MEDLINE: An example from the United States","authors":"Antoinette Cheung MPH, Evan Popoff MSc, Shelagh M. Szabo MSc","doi":"10.1111/hir.12471","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Given the increasing volume of published research in bibliographic databases, efficient retrieval of evidence is crucial and represents an opportunity to integrate novel techniques such as text mining.</p>\n </section>\n \n <section>\n \n <h3> Objectives</h3>\n \n <p>To develop and validate a geographic search filter for identifying research from the United States (US) in Ovid MEDLINE.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>US and non-US citations were collected from bibliographies of evidence-based reviews. Citations were partitioned by US/non-US status and randomly divided to a training and testing set. Using text mining, common one- and two-word terms in title/abstract fields were identified, and frequencies compared between US/non-US citations.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Common US-related terms included (as ratio of frequency in US/non-US citations) US populations and geographic terms [e.g., ‘Americans’ (15.5), ‘Baltimore’ (20.0)]. Common non-US terms were non-US geographic terms [e.g., ‘Japan’ (0.04), ‘French’ (0.05)]. A search filter was developed with 98.3% sensitivity and 82.7% specificity.</p>\n </section>\n \n <section>\n \n <h3> Discussion</h3>\n \n <p>This search filter will streamline the identification of evidence from the US. Periodic updates may be necessary to reflect changes in MEDLINE's controlled vocabulary.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Text mining was instrumental to the development of this search filter. A novel technique generated a gold standard set comprising >20,000 citations. This method may be adapted to develop subsequent geographic search filters.</p>\n </section>\n </div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"91","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/hir.12471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2
Abstract
Background
Given the increasing volume of published research in bibliographic databases, efficient retrieval of evidence is crucial and represents an opportunity to integrate novel techniques such as text mining.
Objectives
To develop and validate a geographic search filter for identifying research from the United States (US) in Ovid MEDLINE.
Methods
US and non-US citations were collected from bibliographies of evidence-based reviews. Citations were partitioned by US/non-US status and randomly divided to a training and testing set. Using text mining, common one- and two-word terms in title/abstract fields were identified, and frequencies compared between US/non-US citations.
Results
Common US-related terms included (as ratio of frequency in US/non-US citations) US populations and geographic terms [e.g., ‘Americans’ (15.5), ‘Baltimore’ (20.0)]. Common non-US terms were non-US geographic terms [e.g., ‘Japan’ (0.04), ‘French’ (0.05)]. A search filter was developed with 98.3% sensitivity and 82.7% specificity.
Discussion
This search filter will streamline the identification of evidence from the US. Periodic updates may be necessary to reflect changes in MEDLINE's controlled vocabulary.
Conclusion
Text mining was instrumental to the development of this search filter. A novel technique generated a gold standard set comprising >20,000 citations. This method may be adapted to develop subsequent geographic search filters.