Unique Rhizobial Communities Dominated by Bradyrhizobium liaoningense and Bradyrhizobium ottawaense were Found in Vegetable Soybean Nodules in Osaka Prefecture, Japan.
IF 2.1 4区 环境科学与生态学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Chikage Minakata, Sawa Wasai-Hara, Satori Fujioka, Shuji Sano, Atsushi Matsumura
{"title":"Unique Rhizobial Communities Dominated by Bradyrhizobium liaoningense and Bradyrhizobium ottawaense were Found in Vegetable Soybean Nodules in Osaka Prefecture, Japan.","authors":"Chikage Minakata, Sawa Wasai-Hara, Satori Fujioka, Shuji Sano, Atsushi Matsumura","doi":"10.1264/jsme2.ME22081","DOIUrl":null,"url":null,"abstract":"<p><p>Vegetable soybean (Glycine max [L.]) is mainly consumed in Asian countries, but has recently attracted attention worldwide due to its high nutritional value. We aimed to identify the indigenous rhizobia of vegetable soybean in Yao City, Osaka Prefecture, Japan, and to clarify the relationships between the rhizobial community and soil environmental factors. Soil samples were collected from 12 vegetable soybean cultivation fields under two different conditions (six greenhouses and six open fields) in Yao City with different varieties of vegetable soybean. A total of 217 isolates were obtained from the nodules and clustered into nine operational taxonomic units (OTUs) with 97% homology based on the 16S-23S rRNA internal transcribed spacer (ITS) region. A phylogenetic ana-lysis showed that OTUs were closely related to Bradyrhizobium liaoningense, B. ottawaense, B. elkanii, and other Bradyrhizobium species and were dominant in this order. B. liaoningense was widely found in sampled sites and accounted for 50.7% of all isolates, while B. ottawaense was mostly limited to open fields. This rhizobial community differed from Japanese soybean rhizobia, in which B. diazoefficiens, B. japonicum, and B. elkanii were dominant. These results imply the characteristic differences among host plants or regional specialties. A non-metric multidimensional scaling (NMDS) ana-lysis revealed the significant impact of soil pH and the contents of Ca, Mg, Mn, total nitrogen (TN), and total carbon (TC) on the distribution of rhizobia. B. liaoningense was detected in soils with a neutral pH, and high TN and low Mn contents increased its abundance. The present study provides novel insights into Japanese rhizobia and potentially novel resources for sustainable agriculture.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"38 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10308233/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Environments","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1264/jsme2.ME22081","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Vegetable soybean (Glycine max [L.]) is mainly consumed in Asian countries, but has recently attracted attention worldwide due to its high nutritional value. We aimed to identify the indigenous rhizobia of vegetable soybean in Yao City, Osaka Prefecture, Japan, and to clarify the relationships between the rhizobial community and soil environmental factors. Soil samples were collected from 12 vegetable soybean cultivation fields under two different conditions (six greenhouses and six open fields) in Yao City with different varieties of vegetable soybean. A total of 217 isolates were obtained from the nodules and clustered into nine operational taxonomic units (OTUs) with 97% homology based on the 16S-23S rRNA internal transcribed spacer (ITS) region. A phylogenetic ana-lysis showed that OTUs were closely related to Bradyrhizobium liaoningense, B. ottawaense, B. elkanii, and other Bradyrhizobium species and were dominant in this order. B. liaoningense was widely found in sampled sites and accounted for 50.7% of all isolates, while B. ottawaense was mostly limited to open fields. This rhizobial community differed from Japanese soybean rhizobia, in which B. diazoefficiens, B. japonicum, and B. elkanii were dominant. These results imply the characteristic differences among host plants or regional specialties. A non-metric multidimensional scaling (NMDS) ana-lysis revealed the significant impact of soil pH and the contents of Ca, Mg, Mn, total nitrogen (TN), and total carbon (TC) on the distribution of rhizobia. B. liaoningense was detected in soils with a neutral pH, and high TN and low Mn contents increased its abundance. The present study provides novel insights into Japanese rhizobia and potentially novel resources for sustainable agriculture.
期刊介绍:
Microbial ecology in natural and engineered environments; Microbial degradation of xenobiotic compounds; Microbial processes in biogeochemical cycles; Microbial interactions and signaling with animals and plants; Interactions among microorganisms; Microorganisms related to public health; Phylogenetic and functional diversity of microbial communities; Genomics, metagenomics, and bioinformatics for microbiology; Application of microorganisms to agriculture, fishery, and industry; Molecular biology and biochemistry related to environmental microbiology; Methodology in general and environmental microbiology; Interdisciplinary research areas for microbial ecology (e.g., Astrobiology, and Origins of Life); Taxonomic description of novel microorganisms with ecological perspective; Physiology and metabolisms of microorganisms; Evolution of genes and microorganisms; Genome report of microorganisms with ecological perspective.