Andrea Aldas-Vargas, Jannigje G. Kers, Hauke Smidt, Huub H. M. Rijnaarts, Nora B. Sutton
{"title":"Bioaugmentation has temporary effect on anaerobic pesticide biodegradation in simulated groundwater systems","authors":"Andrea Aldas-Vargas, Jannigje G. Kers, Hauke Smidt, Huub H. M. Rijnaarts, Nora B. Sutton","doi":"10.1007/s10532-023-10039-0","DOIUrl":null,"url":null,"abstract":"<div><p>Groundwater is the most important source for drinking water in The Netherlands. Groundwater quality is threatened by the presence of pesticides, and biodegradation is a natural process that can contribute to pesticide removal. Groundwater conditions are oligotrophic and thus biodegradation can be limited by the presence and development of microbial communities capable of biodegrading pesticides. For that reason, bioremediation technologies such as bioaugmentation (BA) can help to enhance pesticide biodegradation. We studied the effect of BA using enriched mixed inocula in two column bioreactors that simulate groundwater systems at naturally occurring redox conditions (iron and sulfate-reducing conditions). Columns were operated for around 800 days, and two BA inoculations (BA1 and BA2) were conducted in each column. Inocula were enriched from different wastewater treatment plants (WWTPs) under different redox-conditions. We observed a temporary effect of BA1, reaching 100% removal efficiency of the pesticide 2,4-D after 100 days in both columns. In the iron-reducing column, 2,4-D removal was in general higher than under sulfate-reducing conditions demonstrating the influence of redox conditions on overall biodegradation. We observed a temporary shift in microbial communities after BA1 that is relatable to the increase in 2,4-D removal efficiency. After BA2 under sulfate-reducing conditions, 2,4-D removal efficiency decreased, but no change in the column microbial communities was observed. The present study demonstrates that BA with a mixed inoculum can be a valuable technique for improving biodegradation in anoxic groundwater systems at different redox-conditions.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951022/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-023-10039-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Groundwater is the most important source for drinking water in The Netherlands. Groundwater quality is threatened by the presence of pesticides, and biodegradation is a natural process that can contribute to pesticide removal. Groundwater conditions are oligotrophic and thus biodegradation can be limited by the presence and development of microbial communities capable of biodegrading pesticides. For that reason, bioremediation technologies such as bioaugmentation (BA) can help to enhance pesticide biodegradation. We studied the effect of BA using enriched mixed inocula in two column bioreactors that simulate groundwater systems at naturally occurring redox conditions (iron and sulfate-reducing conditions). Columns were operated for around 800 days, and two BA inoculations (BA1 and BA2) were conducted in each column. Inocula were enriched from different wastewater treatment plants (WWTPs) under different redox-conditions. We observed a temporary effect of BA1, reaching 100% removal efficiency of the pesticide 2,4-D after 100 days in both columns. In the iron-reducing column, 2,4-D removal was in general higher than under sulfate-reducing conditions demonstrating the influence of redox conditions on overall biodegradation. We observed a temporary shift in microbial communities after BA1 that is relatable to the increase in 2,4-D removal efficiency. After BA2 under sulfate-reducing conditions, 2,4-D removal efficiency decreased, but no change in the column microbial communities was observed. The present study demonstrates that BA with a mixed inoculum can be a valuable technique for improving biodegradation in anoxic groundwater systems at different redox-conditions.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.