A scalable approach for continuous time Markov models with covariates.

IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Farhad Hatami, Alex Ocampo, Gordon Graham, Thomas E Nichols, Habib Ganjgahi
{"title":"A scalable approach for continuous time Markov models with covariates.","authors":"Farhad Hatami, Alex Ocampo, Gordon Graham, Thomas E Nichols, Habib Ganjgahi","doi":"10.1093/biostatistics/kxad012","DOIUrl":null,"url":null,"abstract":"<p><p>Existing methods for fitting continuous time Markov models (CTMM) in the presence of covariates suffer from scalability issues due to high computational cost of matrix exponentials calculated for each observation. In this article, we propose an optimization technique for CTMM which uses a stochastic gradient descent algorithm combined with differentiation of the matrix exponential using a Padé approximation. This approach makes fitting large scale data feasible. We present two methods for computing standard errors, one novel approach using the Padé expansion and the other using power series expansion of the matrix exponential. Through simulations, we find improved performance relative to existing CTMM methods, and we demonstrate the method on the large-scale multiple sclerosis NO.MS data set.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"681-701"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247187/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxad012","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Existing methods for fitting continuous time Markov models (CTMM) in the presence of covariates suffer from scalability issues due to high computational cost of matrix exponentials calculated for each observation. In this article, we propose an optimization technique for CTMM which uses a stochastic gradient descent algorithm combined with differentiation of the matrix exponential using a Padé approximation. This approach makes fitting large scale data feasible. We present two methods for computing standard errors, one novel approach using the Padé expansion and the other using power series expansion of the matrix exponential. Through simulations, we find improved performance relative to existing CTMM methods, and we demonstrate the method on the large-scale multiple sclerosis NO.MS data set.

带有协变量的连续时间马尔可夫模型的可扩展方法
在存在协变量的情况下,现有的连续时间马尔可夫模型(CTMM)拟合方法存在可扩展性问题,原因是为每个观测值计算矩阵指数的计算成本很高。在本文中,我们提出了一种 CTMM 的优化技术,该技术使用随机梯度下降算法,并结合使用 Padé 近似对矩阵指数进行微分。这种方法可以拟合大规模数据。我们提出了两种计算标准误差的方法,一种是使用 Padé 扩展的新方法,另一种是使用矩阵指数的幂级数扩展。通过模拟,我们发现相对于现有的 CTMM 方法,该方法的性能有所提高,我们还在大规模多发性硬化 NO.MS 数据集上演示了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biostatistics
Biostatistics 生物-数学与计算生物学
CiteScore
5.10
自引率
4.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信