{"title":"Influence of stress-relieving heat treatments on the efficacy of Co-Cr-Mo-W alloy copings fabricated using selective laser melting.","authors":"Hein Linn Htat, Atsushi Takaichi, Yuka Kajima, Nuttaphon Kittikundecha, Shingo Kamijo, Takao Hanawa, Noriyuki Wakabayashi","doi":"10.2186/jpr.JPR_D_22_00283","DOIUrl":null,"url":null,"abstract":"<p><p>Purpose This study aimed to evaluate the influence of stress-relieving heat treatments on the metal-ceramic bond strength and fitness accuracy of selective laser melting (SLM)-fabricated Co-Cr alloy copings.Methods SLM-manufactured Co-Cr samples were stress-relieved at 750 (Ht-750) and 1150 °C (Ht-1150). The microstructure, surface roughness, metal-ceramic bond strength, marginal and internal fit, Vickers hardness, and residual stress were then compared with those of the non-heat-treated group (As-built). The results were analyzed using one-way ANOVA and post-hoc tests (Tukey's or Student's t test) (P = 0.05).Results The microstructure of the Ht-1150 samples had a brittle oxide layer and lower surface roughness, resulting in significantly lower bond strength values than those of the other groups. The As-built group exhibited significantly lower marginal gap values than the Ht-750 and Ht-1150 groups. Therefore, the post-heat treatments degraded the marginal fitness. The surface residual stress in all sample groups were compressive because of the sandblasting effect. The compressive stresses were larger in Ht-1150 than in As-built and Ht-750 owing to their low hardness values.Conclusions Stress-relief annealing porcelain-fused-to-metal single crowns does not improve bond strength and degrades fitness accuracy because additional post-heat treatments induce thermal distortion. These findings are expected to facilitate the direct application of As-built SLM single crowns in dentistry to minimize post-manufacturing costs and time.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2186/jpr.JPR_D_22_00283","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose This study aimed to evaluate the influence of stress-relieving heat treatments on the metal-ceramic bond strength and fitness accuracy of selective laser melting (SLM)-fabricated Co-Cr alloy copings.Methods SLM-manufactured Co-Cr samples were stress-relieved at 750 (Ht-750) and 1150 °C (Ht-1150). The microstructure, surface roughness, metal-ceramic bond strength, marginal and internal fit, Vickers hardness, and residual stress were then compared with those of the non-heat-treated group (As-built). The results were analyzed using one-way ANOVA and post-hoc tests (Tukey's or Student's t test) (P = 0.05).Results The microstructure of the Ht-1150 samples had a brittle oxide layer and lower surface roughness, resulting in significantly lower bond strength values than those of the other groups. The As-built group exhibited significantly lower marginal gap values than the Ht-750 and Ht-1150 groups. Therefore, the post-heat treatments degraded the marginal fitness. The surface residual stress in all sample groups were compressive because of the sandblasting effect. The compressive stresses were larger in Ht-1150 than in As-built and Ht-750 owing to their low hardness values.Conclusions Stress-relief annealing porcelain-fused-to-metal single crowns does not improve bond strength and degrades fitness accuracy because additional post-heat treatments induce thermal distortion. These findings are expected to facilitate the direct application of As-built SLM single crowns in dentistry to minimize post-manufacturing costs and time.