AI-AIF: artificial intelligence-based arterial input function for quantitative stress perfusion cardiac magnetic resonance.

IF 3.9 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Cian M Scannell, Ebraham Alskaf, Noor Sharrack, Reza Razavi, Sebastien Ourselin, Alistair A Young, Sven Plein, Amedeo Chiribiri
{"title":"AI-AIF: artificial intelligence-based arterial input function for quantitative stress perfusion cardiac magnetic resonance.","authors":"Cian M Scannell,&nbsp;Ebraham Alskaf,&nbsp;Noor Sharrack,&nbsp;Reza Razavi,&nbsp;Sebastien Ourselin,&nbsp;Alistair A Young,&nbsp;Sven Plein,&nbsp;Amedeo Chiribiri","doi":"10.1093/ehjdh/ztac074","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>One of the major challenges in the quantification of myocardial blood flow (MBF) from stress perfusion cardiac magnetic resonance (CMR) is the estimation of the arterial input function (AIF). This is due to the non-linear relationship between the concentration of gadolinium and the MR signal, which leads to signal saturation. In this work, we show that a deep learning model can be trained to predict the unsaturated AIF from standard images, using the reference dual-sequence acquisition AIFs (DS-AIFs) for training.</p><p><strong>Methods and results: </strong>A 1D U-Net was trained, to take the saturated AIF from the standard images as input and predict the unsaturated AIF, using the data from 201 patients from centre 1 and a test set comprised of both an independent cohort of consecutive patients from centre 1 and an external cohort of patients from centre 2 (<i>n</i> = 44). Fully-automated MBF was compared between the DS-AIF and AI-AIF methods using the Mann-Whitney U test and Bland-Altman analysis. There was no statistical difference between the MBF quantified with the DS-AIF [2.77 mL/min/g (1.08)] and predicted with the AI-AIF (2.79 mL/min/g (1.08), <i>P</i> = 0.33. Bland-Altman analysis shows minimal bias between the DS-AIF and AI-AIF methods for quantitative MBF (bias of -0.11 mL/min/g). Additionally, the MBF diagnosis classification of the AI-AIF matched the DS-AIF in 669/704 (95%) of myocardial segments.</p><p><strong>Conclusion: </strong>Quantification of stress perfusion CMR is feasible with a single-sequence acquisition and a single contrast injection using an AI-based correction of the AIF.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9890084/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztac074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

Aims: One of the major challenges in the quantification of myocardial blood flow (MBF) from stress perfusion cardiac magnetic resonance (CMR) is the estimation of the arterial input function (AIF). This is due to the non-linear relationship between the concentration of gadolinium and the MR signal, which leads to signal saturation. In this work, we show that a deep learning model can be trained to predict the unsaturated AIF from standard images, using the reference dual-sequence acquisition AIFs (DS-AIFs) for training.

Methods and results: A 1D U-Net was trained, to take the saturated AIF from the standard images as input and predict the unsaturated AIF, using the data from 201 patients from centre 1 and a test set comprised of both an independent cohort of consecutive patients from centre 1 and an external cohort of patients from centre 2 (n = 44). Fully-automated MBF was compared between the DS-AIF and AI-AIF methods using the Mann-Whitney U test and Bland-Altman analysis. There was no statistical difference between the MBF quantified with the DS-AIF [2.77 mL/min/g (1.08)] and predicted with the AI-AIF (2.79 mL/min/g (1.08), P = 0.33. Bland-Altman analysis shows minimal bias between the DS-AIF and AI-AIF methods for quantitative MBF (bias of -0.11 mL/min/g). Additionally, the MBF diagnosis classification of the AI-AIF matched the DS-AIF in 669/704 (95%) of myocardial segments.

Conclusion: Quantification of stress perfusion CMR is feasible with a single-sequence acquisition and a single contrast injection using an AI-based correction of the AIF.

Abstract Image

Abstract Image

Abstract Image

AI-AIF:基于人工智能的心脏磁共振定量应激灌注动脉输入功能。
目的:心脏磁共振(CMR)应力灌注心肌血流量(MBF)定量的主要挑战之一是动脉输入函数(AIF)的估计。这是由于钆浓度与MR信号之间的非线性关系,导致信号饱和。在这项工作中,我们证明了可以训练深度学习模型来预测来自标准图像的不饱和AIF,使用参考双序列获取AIF (ds -AIF)进行训练。方法和结果:使用来自中心1的201名患者的数据和由中心1连续患者的独立队列和中心2患者的外部队列(n = 44)组成的测试集,训练1D U-Net以标准图像中的饱和AIF作为输入并预测不饱和AIF。全自动MBF采用Mann-Whitney U检验和Bland-Altman分析比较DS-AIF和AI-AIF方法。DS-AIF定量MBF [2.77 mL/min/g(1.08)]与AI-AIF预测MBF [2.79 mL/min/g(1.08)]差异无统计学意义,P = 0.33。Bland-Altman分析显示,DS-AIF和AI-AIF定量MBF方法之间的偏差最小(偏差为-0.11 mL/min/g)。此外,AI-AIF的MBF诊断分类在669/704(95%)的心肌段中与DS-AIF匹配。结论:采用基于人工智能的AIF校正技术,单序列采集和单次注射造影剂,可以对应力灌注CMR进行量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信