Ariel Couture, Rose Marie Charuvil Elizabeth, Lianne Lefsrud, Fereshteh Sattari
{"title":"Evaluation of workplace exposure to respirable crystalline silica in road construction industries in Alberta.","authors":"Ariel Couture, Rose Marie Charuvil Elizabeth, Lianne Lefsrud, Fereshteh Sattari","doi":"10.1177/07482337231176602","DOIUrl":null,"url":null,"abstract":"<p><p>Occupational exposure to respirable crystalline silica (RCS) is common for several occupations in construction, not only because of its presence in many handling materials but also in processes such as grinding and sawing. This study investigated workplace exposure to RCS as quartz in industries and occupations within road construction in Alberta through the RCS monitoring database provided by the Alberta Roadbuilders and Heavy Construction Association (ARHCA) between 2007 and 2016. Descriptive statistics were calculated for exposure-related variables, and mixed model analysis was performed to determine factors affecting the exposure levels. Results showed that the highest exposed workers were in the sand and gravel industry (GM = 45 μg/m<sup>3</sup>). For worker occupations, geometric means ranged from 78 μg/m<sup>3</sup> for crusher operators to 10 μg/m<sup>3</sup> for concrete truck operators. The maximum exposure severity was 33.3 times the occupational exposure limit (OEL) for the sand and gravel and 31 times the OEL for tower operators. The results also showed the effect of seasonal variability on RCS exposure levels. The heterogeneous exposure results indicated significant room for improvement and that controls should focus more on the activity performed than the occupation to lower exposure to RCS levels in industries.</p>","PeriodicalId":23171,"journal":{"name":"Toxicology and Industrial Health","volume":"39 7","pages":"374-387"},"PeriodicalIF":1.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320711/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and Industrial Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/07482337231176602","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 1
Abstract
Occupational exposure to respirable crystalline silica (RCS) is common for several occupations in construction, not only because of its presence in many handling materials but also in processes such as grinding and sawing. This study investigated workplace exposure to RCS as quartz in industries and occupations within road construction in Alberta through the RCS monitoring database provided by the Alberta Roadbuilders and Heavy Construction Association (ARHCA) between 2007 and 2016. Descriptive statistics were calculated for exposure-related variables, and mixed model analysis was performed to determine factors affecting the exposure levels. Results showed that the highest exposed workers were in the sand and gravel industry (GM = 45 μg/m3). For worker occupations, geometric means ranged from 78 μg/m3 for crusher operators to 10 μg/m3 for concrete truck operators. The maximum exposure severity was 33.3 times the occupational exposure limit (OEL) for the sand and gravel and 31 times the OEL for tower operators. The results also showed the effect of seasonal variability on RCS exposure levels. The heterogeneous exposure results indicated significant room for improvement and that controls should focus more on the activity performed than the occupation to lower exposure to RCS levels in industries.
期刊介绍:
Toxicology & Industrial Health is a journal dedicated to reporting results of basic and applied toxicological research with direct application to industrial/occupational health. Such research includes the fields of genetic and cellular toxicology and risk assessment associated with hazardous wastes and groundwater.