A Fish Eye View: Retinal Morphogenesis from Optic Cup to Neuronal Lamination.

IF 11.4 1区 生物学 Q1 CELL BIOLOGY
Caren Norden
{"title":"A Fish Eye View: Retinal Morphogenesis from Optic Cup to Neuronal Lamination.","authors":"Caren Norden","doi":"10.1146/annurev-cellbio-012023-013036","DOIUrl":null,"url":null,"abstract":"<p><p>The neural retina, at the back of the eye, is a fascinating system to use to discover how cells form tissues in the context of the developing nervous system. The retina is the tissue responsible for perception and transmission of visual information from the environment. It consists of five types of neurons and one type of glia cells that are arranged in a highly organized, layered structure to assure visual information flow. To reach this highly ordered arrangement, intricate morphogenic movements are occurring at the cell and tissue levels. I here discuss recent advances made to understand retinal development, from optic cup formation to neuronal layering. It becomes clear that these complex morphogenetic processes must be studied by taking the cellular as well as the tissue-wide aspects into account. The loop has to be closed between exploring how cell behavior influences tissue development and how the surrounding tissue itself influences single cells. Furthermore, it was recently revealed that the retina is a great system to study neuronal migration phenomena, and more is yet to be discovered in this aspect. Constantly developing imaging and image analysis toolboxes as well as the use of machine learning and synthetic biology make the retina the perfect system to explore more of its exciting neurodevelopmental biology.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":" ","pages":"175-196"},"PeriodicalIF":11.4000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of cell and developmental biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-cellbio-012023-013036","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The neural retina, at the back of the eye, is a fascinating system to use to discover how cells form tissues in the context of the developing nervous system. The retina is the tissue responsible for perception and transmission of visual information from the environment. It consists of five types of neurons and one type of glia cells that are arranged in a highly organized, layered structure to assure visual information flow. To reach this highly ordered arrangement, intricate morphogenic movements are occurring at the cell and tissue levels. I here discuss recent advances made to understand retinal development, from optic cup formation to neuronal layering. It becomes clear that these complex morphogenetic processes must be studied by taking the cellular as well as the tissue-wide aspects into account. The loop has to be closed between exploring how cell behavior influences tissue development and how the surrounding tissue itself influences single cells. Furthermore, it was recently revealed that the retina is a great system to study neuronal migration phenomena, and more is yet to be discovered in this aspect. Constantly developing imaging and image analysis toolboxes as well as the use of machine learning and synthetic biology make the retina the perfect system to explore more of its exciting neurodevelopmental biology.

鱼眼观:从视杯到神经元层积的视网膜形态发生。
位于眼睛后部的神经视网膜是一个迷人的系统,可以用来发现细胞如何在发育中的神经系统中形成组织。视网膜是负责感知和传递来自环境的视觉信息的组织。它由五种类型的神经元和一种类型的神经胶质细胞组成,它们以高度组织化、分层的结构排列,以确保视觉信息流。为了达到这种高度有序的排列,在细胞和组织水平上发生了复杂的形态发生运动。我在这里讨论最近在理解视网膜发育方面取得的进展,从视杯的形成到神经元的分层。很明显,这些复杂的形态发生过程必须从细胞和组织的角度进行研究。在探索细胞行为如何影响组织发育和周围组织本身如何影响单个细胞之间,必须闭合回路。此外,最近有研究表明,视网膜是研究神经元迁移现象的一个很好的系统,在这方面还有更多的发现。不断开发的成像和图像分析工具箱,以及机器学习和合成生物学的使用,使视网膜成为探索更多令人兴奋的神经发育生物学的完美系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.50
自引率
0.00%
发文量
21
期刊介绍: The Annual Review of Cell and Developmental Biology, established in 1985, comprehensively addresses major advancements in cell and developmental biology. Encompassing the structure, function, and organization of cells, as well as the development and evolution of cells in relation to both single and multicellular organisms, the journal explores models and tools of molecular biology. As of the current volume, the journal has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, making all articles published under a CC BY license.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信