B Teufel, F Carmo, L Sushama, L Sun, M N Khaliq, S Bélair, A Shamseldin, D Nagesh Kumar, J Vaze
{"title":"Physics-informed deep learning framework to model intense precipitation events at super resolution.","authors":"B Teufel, F Carmo, L Sushama, L Sun, M N Khaliq, S Bélair, A Shamseldin, D Nagesh Kumar, J Vaze","doi":"10.1186/s40562-023-00272-z","DOIUrl":null,"url":null,"abstract":"<p><p>Physical modeling of precipitation at fine (sub-kilometer) spatial scales is computationally very expensive. This study develops a highly efficient framework for this task by coupling deep learning (DL) and physical modeling. This framework is developed and tested using regional climate simulations performed over a domain covering Montreal and adjoining regions, for the summers of 2015-2020, at 2.5 km and 250 m resolutions. The DL framework uses a recurrent approach and considers atmospheric physical processes, such as advection, to generate high-resolution information from low-resolution data, which enables it to recreate fine details and produce temporally consistent fields. The DL framework generates realistic high-resolution precipitation estimates, including intense short-duration precipitation events, which allows it to be applied in engineering problems, such as evaluating the climate resiliency of urban storm drainage systems. The results portray the value of the proposed DL framework, which can be extended to other resolutions, periods, and regions.</p>","PeriodicalId":48596,"journal":{"name":"Geoscience Letters","volume":"10 1","pages":"19"},"PeriodicalIF":4.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10113348/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1186/s40562-023-00272-z","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Physical modeling of precipitation at fine (sub-kilometer) spatial scales is computationally very expensive. This study develops a highly efficient framework for this task by coupling deep learning (DL) and physical modeling. This framework is developed and tested using regional climate simulations performed over a domain covering Montreal and adjoining regions, for the summers of 2015-2020, at 2.5 km and 250 m resolutions. The DL framework uses a recurrent approach and considers atmospheric physical processes, such as advection, to generate high-resolution information from low-resolution data, which enables it to recreate fine details and produce temporally consistent fields. The DL framework generates realistic high-resolution precipitation estimates, including intense short-duration precipitation events, which allows it to be applied in engineering problems, such as evaluating the climate resiliency of urban storm drainage systems. The results portray the value of the proposed DL framework, which can be extended to other resolutions, periods, and regions.
Geoscience LettersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
4.90
自引率
2.50%
发文量
42
审稿时长
25 weeks
期刊介绍:
Geoscience Letters is the official journal of the Asia Oceania Geosciences Society, and a fully open access journal published under the SpringerOpen brand. The journal publishes original, innovative and timely research letter articles and concise reviews on studies of the Earth and its environment, the planetary and space sciences. Contributions reflect the eight scientific sections of the AOGS: Atmospheric Sciences, Biogeosciences, Hydrological Sciences, Interdisciplinary Geosciences, Ocean Sciences, Planetary Sciences, Solar and Terrestrial Sciences, and Solid Earth Sciences. Geoscience Letters focuses on cutting-edge fundamental and applied research in the broad field of the geosciences, including the applications of geoscience research to societal problems. This journal is Open Access, providing rapid electronic publication of high-quality, peer-reviewed scientific contributions.