{"title":"γδ T-cell–mediated immune responses to malaria","authors":"Ganchimeg Bayarsaikhan, Yarob Ibraheem, Shin-Ichi Inoue","doi":"10.1111/1348-0421.13059","DOIUrl":null,"url":null,"abstract":"<p>Malaria is one of the deadliest infectious diseases. Licensed vaccine have demonstrated just over 30% efficacy, and therefore, developing new vaccine candidates and understanding immune responses to <i>Plasmodium</i> have become necessary. γδ T cells have been suggested to be associated with immune responses to malaria due to the observation of their expansion in patients with malaria and experimental models of malaria. γδ T cells act as both “innate-like” and “adaptive-like” cells during immune response to malaria. Studies have found that γδ T cells can recognize <i>Plasmodium</i> phosphoantigen, present the antigen, and initiate adaptive immune response during blood-stage <i>Plasmodium</i> infection. Recent reports also suggested the phagocytic and cytotoxic potential of γδ T cells. Furthermore, γδ T cells can provide protection upon immunization with whole parasite. In addition, γδ T cells during the liver-stage infection were able to prevent experimental cerebral malaria. Despite these new findings, questions related to γδ T-cell response during <i>Plasmodium</i> infection remain to be answered. However, investigating these cells in humans remains difficult in many ways; in this regard, rodent models of malarial infection enable us to study these cells in more detail. Insights from experimental malaria models give rise to new cues for development of malarial vaccine and adjunctive therapy for severe malaria. Here, we review our current knowledge of γδ T-cell immune function in human and experimental mouse malarial infection models; especially, we focus on the mechanisms underlying γδ T cells that are associated with protective immunity during malarial infection.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Immunology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1348-0421.13059","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Malaria is one of the deadliest infectious diseases. Licensed vaccine have demonstrated just over 30% efficacy, and therefore, developing new vaccine candidates and understanding immune responses to Plasmodium have become necessary. γδ T cells have been suggested to be associated with immune responses to malaria due to the observation of their expansion in patients with malaria and experimental models of malaria. γδ T cells act as both “innate-like” and “adaptive-like” cells during immune response to malaria. Studies have found that γδ T cells can recognize Plasmodium phosphoantigen, present the antigen, and initiate adaptive immune response during blood-stage Plasmodium infection. Recent reports also suggested the phagocytic and cytotoxic potential of γδ T cells. Furthermore, γδ T cells can provide protection upon immunization with whole parasite. In addition, γδ T cells during the liver-stage infection were able to prevent experimental cerebral malaria. Despite these new findings, questions related to γδ T-cell response during Plasmodium infection remain to be answered. However, investigating these cells in humans remains difficult in many ways; in this regard, rodent models of malarial infection enable us to study these cells in more detail. Insights from experimental malaria models give rise to new cues for development of malarial vaccine and adjunctive therapy for severe malaria. Here, we review our current knowledge of γδ T-cell immune function in human and experimental mouse malarial infection models; especially, we focus on the mechanisms underlying γδ T cells that are associated with protective immunity during malarial infection.
期刊介绍:
Microbiology and Immunology is published in association with Japanese Society for Bacteriology, Japanese Society for Virology, and Japanese Society for Host Defense Research. It is peer-reviewed publication that provides insight into the study of microbes and the host immune, biological and physiological responses.
Fields covered by Microbiology and Immunology include:Bacteriology|Virology|Immunology|pathogenic infections in human, animals and plants|pathogenicity and virulence factors such as microbial toxins and cell-surface components|factors involved in host defense, inflammation, development of vaccines|antimicrobial agents and drug resistance of microbes|genomics and proteomics.