Prospective of Indole-3-Acteic Acid (IAA) and Endophytic Microbe Bacillus subtilis Strain SSA4 in Paddy Seedlings Development and Ascorbate-Glutathione (AsA-GSH) Cycle Regulation to Mitigate NaCl Toxicity.
Shobhit Raj Vimal, Jay Shankar Singh, Sheo Mohan Prasad
{"title":"Prospective of Indole-3-Acteic Acid (IAA) and Endophytic Microbe Bacillus subtilis Strain SSA4 in Paddy Seedlings Development and Ascorbate-Glutathione (AsA-GSH) Cycle Regulation to Mitigate NaCl Toxicity.","authors":"Shobhit Raj Vimal, Jay Shankar Singh, Sheo Mohan Prasad","doi":"10.1007/s12033-023-00743-w","DOIUrl":null,"url":null,"abstract":"<p><p>Plant growth promoting endophytes significantly affected plant health. The present study demonstrates effect of endophytic isolate Bacillus subtilis strain SSA4 and exogenous Indole-3-acetic acid (IAA) on paddy seedlings growth parameters, photosynthetic pigments, photosynthesis, leaf gas exchange parameters, respiration, oxidative stress biomarkers and Ascorbate-Glutathione (AsA-GSH) cycle under different NaCl (0-300 mM) stresses. The Bacillus subtilis SSA4 was identified by 16S r-RNA gene sequence analyses and NCBI BLASTn tools. The B. subtilis SSA4 tolerated 1100 mM NaCl and produced IAA (42.15 µg m/L) at 300 mM NaCl stress. The paddy genotype (HUR 917) treated with exogenous IAA (21 µg m/L) and B. subtilis strain SSA4 egg cell based bioformulation was significantly affected seedlings physiology and biochemistry at lower (150 mM) and higher (300 mM) NaCl doses. In conclusion, co-inoculation found as effective green tool to mitigating salinity stress in paddy seedlings.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3054-3069"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-023-00743-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant growth promoting endophytes significantly affected plant health. The present study demonstrates effect of endophytic isolate Bacillus subtilis strain SSA4 and exogenous Indole-3-acetic acid (IAA) on paddy seedlings growth parameters, photosynthetic pigments, photosynthesis, leaf gas exchange parameters, respiration, oxidative stress biomarkers and Ascorbate-Glutathione (AsA-GSH) cycle under different NaCl (0-300 mM) stresses. The Bacillus subtilis SSA4 was identified by 16S r-RNA gene sequence analyses and NCBI BLASTn tools. The B. subtilis SSA4 tolerated 1100 mM NaCl and produced IAA (42.15 µg m/L) at 300 mM NaCl stress. The paddy genotype (HUR 917) treated with exogenous IAA (21 µg m/L) and B. subtilis strain SSA4 egg cell based bioformulation was significantly affected seedlings physiology and biochemistry at lower (150 mM) and higher (300 mM) NaCl doses. In conclusion, co-inoculation found as effective green tool to mitigating salinity stress in paddy seedlings.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.