{"title":"State-of-the-art session key generation on priority-based adaptive neural machine (PANM) in telemedicine.","authors":"Joydeep Dey","doi":"10.1007/s00521-022-08169-2","DOIUrl":null,"url":null,"abstract":"<p><p>Telemedicine is one of the safest methods to provide healthcare facilities to the remote patients with the help of digitization. In this paper, state-of-the-art session key has been proposed based on the priority oriented neural machines followed by its validation. State-of-the-art technique can be mentioned as newer scientific method. Soft computing has been extensively used and modified here under the ANN domain. Telemedicine facilitates secure data communication between the patients and the doctors regarding their treatments. The best fitted hidden neuron can contribute only in the formation of the neural output. Minimum correlation was taken into consideration under this study. Hebbian learning rule was applied on both the patient's neural machine and the doctor's neural machine. Lesser iterations were needed in the patient's machine and the doctor's machine for the synchronization. Thus, the key generation time has been shortened here which were 4.011 ms, 4.324 ms, 5.338 ms, 5.691 ms, and 6.105 ms for 56 bits, 128 bits, 256 bits, 512 bits, and 1024 bits of state-of-the-art session keys, respectively. Statistically, different key sizes of the state-of-the-art session keys were tested and accepted. Derived value-based function had yielded successful outcomes too. Partial validations with different mathematical hardness had been imposed here too. Thus, the proposed technique is suitable for the session key generation and authentication in the telemedicine in order to preserve the patients' data privacy. This proposed method has been highly protective against numerous data attacks inside the public networks. Partial transmission of the state-of-the-art session key disables the intruders to decode the same bit patterns of the proposed set of keys.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":"35 13","pages":"9517-9533"},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10032630/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-022-08169-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Telemedicine is one of the safest methods to provide healthcare facilities to the remote patients with the help of digitization. In this paper, state-of-the-art session key has been proposed based on the priority oriented neural machines followed by its validation. State-of-the-art technique can be mentioned as newer scientific method. Soft computing has been extensively used and modified here under the ANN domain. Telemedicine facilitates secure data communication between the patients and the doctors regarding their treatments. The best fitted hidden neuron can contribute only in the formation of the neural output. Minimum correlation was taken into consideration under this study. Hebbian learning rule was applied on both the patient's neural machine and the doctor's neural machine. Lesser iterations were needed in the patient's machine and the doctor's machine for the synchronization. Thus, the key generation time has been shortened here which were 4.011 ms, 4.324 ms, 5.338 ms, 5.691 ms, and 6.105 ms for 56 bits, 128 bits, 256 bits, 512 bits, and 1024 bits of state-of-the-art session keys, respectively. Statistically, different key sizes of the state-of-the-art session keys were tested and accepted. Derived value-based function had yielded successful outcomes too. Partial validations with different mathematical hardness had been imposed here too. Thus, the proposed technique is suitable for the session key generation and authentication in the telemedicine in order to preserve the patients' data privacy. This proposed method has been highly protective against numerous data attacks inside the public networks. Partial transmission of the state-of-the-art session key disables the intruders to decode the same bit patterns of the proposed set of keys.
期刊介绍:
Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems.
All items relevant to building practical systems are within its scope, including but not limited to:
-adaptive computing-
algorithms-
applicable neural networks theory-
applied statistics-
architectures-
artificial intelligence-
benchmarks-
case histories of innovative applications-
fuzzy logic-
genetic algorithms-
hardware implementations-
hybrid intelligent systems-
intelligent agents-
intelligent control systems-
intelligent diagnostics-
intelligent forecasting-
machine learning-
neural networks-
neuro-fuzzy systems-
pattern recognition-
performance measures-
self-learning systems-
software simulations-
supervised and unsupervised learning methods-
system engineering and integration.
Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.