Bio-SHARPE: Bioinspired Soft and High Aspect Ratio Pumping Element for Robotic and Medical Applications.

IF 6.4 2区 计算机科学 Q1 ROBOTICS
Soft Robotics Pub Date : 2023-12-01 Epub Date: 2023-05-02 DOI:10.1089/soro.2021.0154
James Davies, Mai Thanh Thai, Harrison Low, Phuoc Thien Phan, Trung Thien Hoang, Nigel Hamilton Lovell, Thanh Nho Do
{"title":"Bio-SHARPE: Bioinspired Soft and High Aspect Ratio Pumping Element for Robotic and Medical Applications.","authors":"James Davies, Mai Thanh Thai, Harrison Low, Phuoc Thien Phan, Trung Thien Hoang, Nigel Hamilton Lovell, Thanh Nho Do","doi":"10.1089/soro.2021.0154","DOIUrl":null,"url":null,"abstract":"<p><p>The advent of soft robots has solved many issues posed by their rigid counterparts, including safer interactions with humans and the capability to work in narrow and complex environments. While much work has been devoted to developing soft actuators and bioinspired mechatronic systems, comparatively little has been done to improve the methods of actuation. Hydraulically soft actuators (HSAs) are emerging candidates to control soft robots due to their fast responses, low noise, and low hysteresis compared to compressible pneumatic ones. Despite advances, current hydraulic sources for large HSAs are still bulky and require high power availability to drive the pumping plant. To overcome these challenges, this work presents a new bioinspired soft and high aspect ratio pumping element (Bio-SHARPE) for use in soft robotic and medical applications. This new soft pumping element can amplify its input volume to at least 8.6 times with a peak pressure of at least 40 kPa. The element can be integrated into existing hydraulic pumping systems like a hydraulic gearbox. Naturally, an amplification of fluid volume can only come at the sacrifice of pumping pressure, which was observed as a 19.1:1 reduction from input to output pressure. The new concept enables a large soft robotic body to be actuated by smaller fluid reservoirs and pumping plant, potentially reducing their power and weight, and thus facilitating drive source miniaturization. The high amplification ratio also makes soft robotic systems more applicable for human-centric applications such as rehabilitation aids, bioinspired untethered soft robots, medical devices, and soft artificial organs. Details of the fabrication and experimental characterization of the Bio-SHARPE and its associated components are given. A soft robotic squid and an artificial heart ventricle are introduced and experimentally validated.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":" ","pages":"1055-1069"},"PeriodicalIF":6.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2021.0154","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of soft robots has solved many issues posed by their rigid counterparts, including safer interactions with humans and the capability to work in narrow and complex environments. While much work has been devoted to developing soft actuators and bioinspired mechatronic systems, comparatively little has been done to improve the methods of actuation. Hydraulically soft actuators (HSAs) are emerging candidates to control soft robots due to their fast responses, low noise, and low hysteresis compared to compressible pneumatic ones. Despite advances, current hydraulic sources for large HSAs are still bulky and require high power availability to drive the pumping plant. To overcome these challenges, this work presents a new bioinspired soft and high aspect ratio pumping element (Bio-SHARPE) for use in soft robotic and medical applications. This new soft pumping element can amplify its input volume to at least 8.6 times with a peak pressure of at least 40 kPa. The element can be integrated into existing hydraulic pumping systems like a hydraulic gearbox. Naturally, an amplification of fluid volume can only come at the sacrifice of pumping pressure, which was observed as a 19.1:1 reduction from input to output pressure. The new concept enables a large soft robotic body to be actuated by smaller fluid reservoirs and pumping plant, potentially reducing their power and weight, and thus facilitating drive source miniaturization. The high amplification ratio also makes soft robotic systems more applicable for human-centric applications such as rehabilitation aids, bioinspired untethered soft robots, medical devices, and soft artificial organs. Details of the fabrication and experimental characterization of the Bio-SHARPE and its associated components are given. A soft robotic squid and an artificial heart ventricle are introduced and experimentally validated.

Bio-SHARPE:仿生软和高纵横比泵送元件,用于机器人和医疗应用。
软机器人的出现解决了刚性机器人带来的许多问题,包括与人类更安全的互动,以及在狭窄和复杂环境中工作的能力。虽然在开发软致动器和仿生机电系统方面做了大量工作,但在改进致动方法方面做得相对较少。与可压缩气动执行器相比,液压软执行器(HSAs)由于其响应快、噪音低、滞后小而成为控制软机器人的新兴候选。尽管取得了进步,但目前用于大型HSAs的液压源仍然体积庞大,并且需要高功率来驱动抽水装置。为了克服这些挑战,这项工作提出了一种新的生物灵感软和高纵横比泵送元件(Bio-SHARPE),用于软机器人和医疗应用。这种新型软泵元件可以将其输入体积放大至少8.6倍,峰值压力至少为40kpa。该元件可以集成到现有的液压泵系统中,如液压变速箱。当然,流体体积的扩大只能以牺牲泵送压力为代价,观察到泵送压力从输入压力到输出压力降低了19.1:1。新概念使大型软体机器人体能够由较小的储液器和泵送装置驱动,从而潜在地降低其功率和重量,从而促进驱动源的小型化。高放大比也使软机器人系统更适用于以人为中心的应用,如康复辅助设备、仿生无系绳软机器人、医疗设备和软人造器官。详细介绍了Bio-SHARPE及其相关组件的制备和实验表征。介绍了一种软鱿鱼机器人和一种人工心脏心室,并进行了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soft Robotics
Soft Robotics ROBOTICS-
CiteScore
15.50
自引率
5.10%
发文量
128
期刊介绍: Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made. With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信