An Ionic Liquid-Based Stretchable Sensor for Measuring Normal and Shear Force.

IF 6.4 2区 计算机科学 Q1 ROBOTICS
Soft Robotics Pub Date : 2023-12-01 Epub Date: 2023-05-02 DOI:10.1089/soro.2022.0207
Omar Faruk Emon, Hao Sun, Ahadur Rahim, Jae-Won Choi
{"title":"An Ionic Liquid-Based Stretchable Sensor for Measuring Normal and Shear Force.","authors":"Omar Faruk Emon, Hao Sun, Ahadur Rahim, Jae-Won Choi","doi":"10.1089/soro.2022.0207","DOIUrl":null,"url":null,"abstract":"<p><p>Soft and stretchable force sensors are widely used for health monitoring, robotics, prosthetics, and other applications. Soft force sensors with the capability of measuring both normal and shear force could offer even greater functionality and provide more information, particularly in the field of biomechanics. In this work, a new solid-state force sensor is proposed that can measure both normal and shear forces at the same time. The soft and stretchable sensor was fabricated using an ionic liquid (IL)/polymer network. Two separate IL-based polymer membranes were used to detect normal and shear forces. Sensor architecture and electrical wiring for normal, shear, and combined sensing were developed, and various material compositions for different sensor layers were investigated to find the combination that could achieve the optimum sensor performance. A basic material formulation for carbon nanotube-based electrodes, the IL/polymer network, and polymeric insulation layers was proposed. To configure a combined (normal and shear) sensor, separate sensors for normal and shear deformations were first designed and investigated. Later, a combined sensor was fabricated using a mold via screen printing, photocuring, and thermal curing. The combined sensor was evaluated under different force conditions. The results show that the sensor can reliably measure normal and shear forces. Moreover, the findings demonstrate a way to successfully modulate the sensitivity for normal and shear sensing by varying the material composition or geometric configuration, which provides flexibility for application-specific designs.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":" ","pages":"1115-1125"},"PeriodicalIF":6.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2022.0207","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Soft and stretchable force sensors are widely used for health monitoring, robotics, prosthetics, and other applications. Soft force sensors with the capability of measuring both normal and shear force could offer even greater functionality and provide more information, particularly in the field of biomechanics. In this work, a new solid-state force sensor is proposed that can measure both normal and shear forces at the same time. The soft and stretchable sensor was fabricated using an ionic liquid (IL)/polymer network. Two separate IL-based polymer membranes were used to detect normal and shear forces. Sensor architecture and electrical wiring for normal, shear, and combined sensing were developed, and various material compositions for different sensor layers were investigated to find the combination that could achieve the optimum sensor performance. A basic material formulation for carbon nanotube-based electrodes, the IL/polymer network, and polymeric insulation layers was proposed. To configure a combined (normal and shear) sensor, separate sensors for normal and shear deformations were first designed and investigated. Later, a combined sensor was fabricated using a mold via screen printing, photocuring, and thermal curing. The combined sensor was evaluated under different force conditions. The results show that the sensor can reliably measure normal and shear forces. Moreover, the findings demonstrate a way to successfully modulate the sensitivity for normal and shear sensing by varying the material composition or geometric configuration, which provides flexibility for application-specific designs.

一种基于离子液体的可拉伸法向力和剪切力传感器。
柔软和可拉伸力传感器广泛用于健康监测,机器人,假肢和其他应用。具有测量法向力和剪切力能力的软力传感器可以提供更大的功能和更多的信息,特别是在生物力学领域。在这项工作中,提出了一种新的固态力传感器,可以同时测量法向和剪切力。采用离子液体(IL)/聚合物网络制备了柔软可拉伸的传感器。使用两个独立的il基聚合物膜来检测法向和剪切力。开发了用于普通、剪切和组合传感的传感器结构和布线,并研究了不同传感器层的不同材料组成,以找到能够实现最佳传感器性能的组合。提出了碳纳米管电极、IL/聚合物网络和聚合物绝缘层的基本材料配方。为了配置组合(法向和剪切)传感器,首先设计并研究了法向和剪切变形的单独传感器。后来,通过丝网印刷,光固化和热固化,用模具制造了一个组合传感器。对组合传感器在不同受力条件下的性能进行了评估。结果表明,该传感器可以可靠地测量法向力和剪力。此外,研究结果展示了一种通过改变材料成分或几何结构来成功调节法向和剪切传感灵敏度的方法,这为特定应用的设计提供了灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soft Robotics
Soft Robotics ROBOTICS-
CiteScore
15.50
自引率
5.10%
发文量
128
期刊介绍: Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made. With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信