Z Batu Eken, H Miyajima, E Bedair, S Gunal, M Ucok, F Ozer
{"title":"Effect of Acidic Beverages on the Hardness, Elastic Modulus and Wear Resistance of Giomer and Nongiomer Bulk-fill Materials.","authors":"Z Batu Eken, H Miyajima, E Bedair, S Gunal, M Ucok, F Ozer","doi":"10.2341/22-063-L","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The aim of this study was to evaluate and compare the effect of acidic beverages on the hardness, elastic modulus, and wear resistance of four different resin-based restorative materials.</p><p><strong>Methods and materials: </strong>A total of 128 specimens (10 mm diameter, 4 mm thickness) were prepared from a conventional resin composite (Filtek Z250 [Z250]), a giomer bulk-fill (Beautifil Bulk Restorative [BBR]) and two nongiomer bulk-fill materials (Tetric N-Ceram Bulk Fill [TNC] and SonicFill 2 [SF2]). Each material group was divided into four subgroups (n=8) according to the storage media: artificial saliva (control), orange juice, regular Coke, and sports drink. The experimental specimens were immersed in the solutions for 30 minutes, five times a day for 5 days and kept in artificial saliva for an hour between the immersion periods. Control specimens were stored in artificial saliva for 5 days. The nanoindentation test with a Berkovich diamond tip was used to determine the hardness and elastic modulus before and after the 5-day storage periods. Following the nanoindentation tests, the specimens were subjected to a chewing simulator for 120,000 cycles. The specimens were then scanned with a three-dimensional scanner. The wear resistance was analyzed by measuring the volume and height loss. Specimens were observed by environmental scanning electron microscopy. The statistical analyses were performed by analysis of variance, Tukey HDS test, and paired samples t-test (α=0.05).</p><p><strong>Results: </strong>Z250 showed significantly higher elastic modulus in all groups (p<0.05). After erosive cycles, the greatest decrease in hardness and elastic modulus was observed for BBR. TNC showed higher wear resistance than the other resin-based materials (p<0.05). The BBR specimens immersed in acidic solutions showed higher wear rates than the artificial saliva group (p<0.05).</p><p><strong>Conclusions: </strong>Conventional resin composite showed higher hardness and elastic modulus than bulk-fill materials when exposed to acidic beverages but comparable or lower wear resistance. Degradation due to acidic beverages most affected the mechanical properties of giomer bulk-fill.</p>","PeriodicalId":19502,"journal":{"name":"Operative dentistry","volume":"48 4","pages":"435-446"},"PeriodicalIF":2.2000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operative dentistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2341/22-063-L","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: The aim of this study was to evaluate and compare the effect of acidic beverages on the hardness, elastic modulus, and wear resistance of four different resin-based restorative materials.
Methods and materials: A total of 128 specimens (10 mm diameter, 4 mm thickness) were prepared from a conventional resin composite (Filtek Z250 [Z250]), a giomer bulk-fill (Beautifil Bulk Restorative [BBR]) and two nongiomer bulk-fill materials (Tetric N-Ceram Bulk Fill [TNC] and SonicFill 2 [SF2]). Each material group was divided into four subgroups (n=8) according to the storage media: artificial saliva (control), orange juice, regular Coke, and sports drink. The experimental specimens were immersed in the solutions for 30 minutes, five times a day for 5 days and kept in artificial saliva for an hour between the immersion periods. Control specimens were stored in artificial saliva for 5 days. The nanoindentation test with a Berkovich diamond tip was used to determine the hardness and elastic modulus before and after the 5-day storage periods. Following the nanoindentation tests, the specimens were subjected to a chewing simulator for 120,000 cycles. The specimens were then scanned with a three-dimensional scanner. The wear resistance was analyzed by measuring the volume and height loss. Specimens were observed by environmental scanning electron microscopy. The statistical analyses were performed by analysis of variance, Tukey HDS test, and paired samples t-test (α=0.05).
Results: Z250 showed significantly higher elastic modulus in all groups (p<0.05). After erosive cycles, the greatest decrease in hardness and elastic modulus was observed for BBR. TNC showed higher wear resistance than the other resin-based materials (p<0.05). The BBR specimens immersed in acidic solutions showed higher wear rates than the artificial saliva group (p<0.05).
Conclusions: Conventional resin composite showed higher hardness and elastic modulus than bulk-fill materials when exposed to acidic beverages but comparable or lower wear resistance. Degradation due to acidic beverages most affected the mechanical properties of giomer bulk-fill.
期刊介绍:
Operative Dentistry is a refereed, international journal published bi-monthly and distributed to subscribers in over 50 countries. In 2012, we printed 84 articles (672 pages). Papers were submitted by authors from 45 countries, in the categories of Clinical Research, Laboratory Research, Clinical Techniques/Case Presentations and Invited Papers, as well as Editorials and Abstracts.
One of the strong points of our journal is that our current publication time for accepted manuscripts is 4 to 6 months from the date of submission. Clinical Techniques/Case Presentations have a very quick turnaround time, which allows for very rapid publication of clinical based concepts. We also provide color for those papers that would benefit from its use.
The journal does not accept any advertising but you will find postings for faculty positions. Additionally, the journal also does not rent, sell or otherwise allow its subscriber list to be used by any other entity