Xiaoxu Fu, Xiujuan Zhou, Ya Liu, Yuanhong Lei, Hongyan Xie, Yulin Leng, Hong Gao, Chunguang Xie
{"title":"Preliminary Study of the Distinctive Mechanism of Shenqi Compound in Treating Rats with Type 2 Diabetes Mellitus by Comparing with Metformin.","authors":"Xiaoxu Fu, Xiujuan Zhou, Ya Liu, Yuanhong Lei, Hongyan Xie, Yulin Leng, Hong Gao, Chunguang Xie","doi":"10.2174/1570161121666230208130349","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In China, traditional Chinese medicine (TCM) has been used to treat type 2 diabetes mellitus (T2DM) for centuries.</p><p><strong>Methods: </strong>To investigate how the TCM ShenQi (SQC) formulation differs from metformin, four rat groups, including control, model, T2DM rats treated using SQC (SQC group), and T2DM rats treated using metformin (Met group), were constructed. The differentially expressed genes (DEGs) between SQC and metformin groups were screened, and the co-expression modules of the DEGs were constructed based on the weighted correlation network analysis (WGCNA) method. The correlation between modules and metabolic pathways was also calculated. The potential gene targets of SQC were obtained via the TCM systems pharmacology analysis.</p><p><strong>Results: </strong>A total of 962 DEGs between SQC and Met groups were screened, and these DEGs were significantly enriched in various functions, such as sensory perception of the chemical stimulus, NADH dehydrogenase (ubiquinone) activity, and positive regulation of the fatty acid metabolic process. In addition, seven co-expression modules were constructed after the redundancy-reduced process. Four of these modules involved specific activated or inhibited metabolic pathways. Moreover, 334 effective ingredients of SQC herbs were collected, and four genes (RNASE1 (ribonuclease A family member 1, pancreatic), ADRB1 (adrenoceptor beta 1), PPIF (peptidylprolyl isomerase F), and ALDH1B1 (aldehyde dehydrogenase 1 family member B1)) were identified as potential targets of SQC.</p><p><strong>Conclusion: </strong>Comparing SQC with metformin to treat T2DM rats revealed several potential gene targets. These genes provide clues for elucidating the therapeutic mechanisms of SQC.</p>","PeriodicalId":11278,"journal":{"name":"Current vascular pharmacology","volume":"21 2","pages":"120-127"},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current vascular pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1570161121666230208130349","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 1
Abstract
Background: In China, traditional Chinese medicine (TCM) has been used to treat type 2 diabetes mellitus (T2DM) for centuries.
Methods: To investigate how the TCM ShenQi (SQC) formulation differs from metformin, four rat groups, including control, model, T2DM rats treated using SQC (SQC group), and T2DM rats treated using metformin (Met group), were constructed. The differentially expressed genes (DEGs) between SQC and metformin groups were screened, and the co-expression modules of the DEGs were constructed based on the weighted correlation network analysis (WGCNA) method. The correlation between modules and metabolic pathways was also calculated. The potential gene targets of SQC were obtained via the TCM systems pharmacology analysis.
Results: A total of 962 DEGs between SQC and Met groups were screened, and these DEGs were significantly enriched in various functions, such as sensory perception of the chemical stimulus, NADH dehydrogenase (ubiquinone) activity, and positive regulation of the fatty acid metabolic process. In addition, seven co-expression modules were constructed after the redundancy-reduced process. Four of these modules involved specific activated or inhibited metabolic pathways. Moreover, 334 effective ingredients of SQC herbs were collected, and four genes (RNASE1 (ribonuclease A family member 1, pancreatic), ADRB1 (adrenoceptor beta 1), PPIF (peptidylprolyl isomerase F), and ALDH1B1 (aldehyde dehydrogenase 1 family member B1)) were identified as potential targets of SQC.
Conclusion: Comparing SQC with metformin to treat T2DM rats revealed several potential gene targets. These genes provide clues for elucidating the therapeutic mechanisms of SQC.
期刊介绍:
Current Vascular Pharmacology publishes clinical and research-based reviews/mini-reviews, original research articles, letters, debates, drug clinical trial studies and guest edited issues to update all those concerned with the treatment of vascular disease, bridging the gap between clinical practice and ongoing research.
Vascular disease is the commonest cause of death in Westernized countries and its incidence is on the increase in developing countries. It follows that considerable research is directed at establishing effective treatment for acute vascular events. Long-term treatment has also received considerable attention (e.g. for symptomatic relief). Furthermore, effective prevention, whether primary or secondary, is backed by the findings of several landmark trials. Vascular disease is a complex field with primary care physicians and nurse practitioners as well as several specialties involved. The latter include cardiology, vascular and cardio thoracic surgery, general medicine, radiology, clinical pharmacology and neurology (stroke units).