Associations of circulating proteins with lipoprotein profiles: proteomic analyses from the OmniHeart randomized trial and the Atherosclerosis Risk in Communities (ARIC) Study.
Hyunju Kim, Alice H Lichtenstein, Peter Ganz, Edgar R Miller, Josef Coresh, Lawrence J Appel, Casey M Rebholz
{"title":"Associations of circulating proteins with lipoprotein profiles: proteomic analyses from the OmniHeart randomized trial and the Atherosclerosis Risk in Communities (ARIC) Study.","authors":"Hyunju Kim, Alice H Lichtenstein, Peter Ganz, Edgar R Miller, Josef Coresh, Lawrence J Appel, Casey M Rebholz","doi":"10.1186/s12014-023-09416-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Within healthy dietary patterns, manipulation of the proportion of macronutrient can reduce CVD risk. However, the biological pathways underlying healthy diet-disease associations are poorly understood. Using an untargeted, large-scale proteomic profiling, we aimed to (1) identify proteins mediating the association between healthy dietary patterns varying in the proportion of macronutrient and lipoproteins, and (2) validate the associations between diet-related proteins and lipoproteins in the Atherosclerosis Risk in Communities (ARIC) Study.</p><p><strong>Methods: </strong>In 140 adults from the OmniHeart trial, a randomized, cross-over, controlled feeding study with 3 intervention periods (carbohydrate-rich; protein-rich; unsaturated fat-rich dietary patterns), 4,958 proteins were quantified at the end of each diet intervention period using an aptamer assay (SomaLogic). We assessed differences in log<sub>2</sub>-transformed proteins in 3 between-diet comparisons using paired t-tests, examined the associations between diet-related proteins and lipoproteins using linear regression, and identified proteins mediating these associations using a causal mediation analysis. Levels of diet-related proteins and lipoprotein associations were validated in the ARIC study (n = 11,201) using multivariable linear regression models, adjusting for important confounders.</p><p><strong>Results: </strong>Three between-diet comparisons identified 497 significantly different proteins (protein-rich vs. carbohydrate-rich = 18; unsaturated fat-rich vs. carbohydrate-rich = 335; protein-rich vs. unsaturated fat-rich dietary patterns = 398). Of these, 9 proteins [apolipoprotein M, afamin, collagen alpha-3(VI) chain, chitinase-3-like protein 1, inhibin beta A chain, palmitoleoyl-protein carboxylesterase NOTUM, cathelicidin antimicrobial peptide, guanylate-binding protein 2, COP9 signalosome complex subunit 7b] were positively associated with lipoproteins [high-density lipoprotein (HDL)-cholesterol (C) = 2; triglyceride = 5; non-HDL-C = 3; total cholesterol to HDL-C ratio = 1]. Another protein, sodium-coupled monocarboxylate transporter 1, was inversely associated with HDL-C and positively associated with total cholesterol to HDL-C ratio. The proportion of the association between diet and lipoproteins mediated by these 10 proteins ranged from 21 to 98%. All of the associations between diet-related proteins and lipoproteins were significant in the ARIC study, except for afamin.</p><p><strong>Conclusions: </strong>We identified proteins that mediate the association between healthy dietary patterns varying in macronutrients and lipoproteins in a randomized feeding study and an observational study.</p><p><strong>Trial registration: </strong>NCT00051350 at clinicaltrials.gov.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"20 1","pages":"27"},"PeriodicalIF":4.6000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10316599/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12014-023-09416-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Within healthy dietary patterns, manipulation of the proportion of macronutrient can reduce CVD risk. However, the biological pathways underlying healthy diet-disease associations are poorly understood. Using an untargeted, large-scale proteomic profiling, we aimed to (1) identify proteins mediating the association between healthy dietary patterns varying in the proportion of macronutrient and lipoproteins, and (2) validate the associations between diet-related proteins and lipoproteins in the Atherosclerosis Risk in Communities (ARIC) Study.
Methods: In 140 adults from the OmniHeart trial, a randomized, cross-over, controlled feeding study with 3 intervention periods (carbohydrate-rich; protein-rich; unsaturated fat-rich dietary patterns), 4,958 proteins were quantified at the end of each diet intervention period using an aptamer assay (SomaLogic). We assessed differences in log2-transformed proteins in 3 between-diet comparisons using paired t-tests, examined the associations between diet-related proteins and lipoproteins using linear regression, and identified proteins mediating these associations using a causal mediation analysis. Levels of diet-related proteins and lipoprotein associations were validated in the ARIC study (n = 11,201) using multivariable linear regression models, adjusting for important confounders.
Results: Three between-diet comparisons identified 497 significantly different proteins (protein-rich vs. carbohydrate-rich = 18; unsaturated fat-rich vs. carbohydrate-rich = 335; protein-rich vs. unsaturated fat-rich dietary patterns = 398). Of these, 9 proteins [apolipoprotein M, afamin, collagen alpha-3(VI) chain, chitinase-3-like protein 1, inhibin beta A chain, palmitoleoyl-protein carboxylesterase NOTUM, cathelicidin antimicrobial peptide, guanylate-binding protein 2, COP9 signalosome complex subunit 7b] were positively associated with lipoproteins [high-density lipoprotein (HDL)-cholesterol (C) = 2; triglyceride = 5; non-HDL-C = 3; total cholesterol to HDL-C ratio = 1]. Another protein, sodium-coupled monocarboxylate transporter 1, was inversely associated with HDL-C and positively associated with total cholesterol to HDL-C ratio. The proportion of the association between diet and lipoproteins mediated by these 10 proteins ranged from 21 to 98%. All of the associations between diet-related proteins and lipoproteins were significant in the ARIC study, except for afamin.
Conclusions: We identified proteins that mediate the association between healthy dietary patterns varying in macronutrients and lipoproteins in a randomized feeding study and an observational study.
Trial registration: NCT00051350 at clinicaltrials.gov.