{"title":"A Robust Method for Detecting Item Misfit in Large-Scale Assessments.","authors":"Matthias von Davier, Ummugul Bezirhan","doi":"10.1177/00131644221105819","DOIUrl":null,"url":null,"abstract":"<p><p>Viable methods for the identification of item misfit or Differential Item Functioning (DIF) are central to scale construction and sound measurement. Many approaches rely on the derivation of a limiting distribution under the assumption that a certain model fits the data perfectly. Typical DIF assumptions such as the monotonicity and population independence of item functions are present even in classical test theory but are more explicitly stated when using item response theory or other latent variable models for the assessment of item fit. The work presented here provides a robust approach for DIF detection that does not assume perfect model data fit, but rather uses Tukey's concept of contaminated distributions. The approach uses robust outlier detection to flag items for which adequate model data fit cannot be established.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311954/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644221105819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Viable methods for the identification of item misfit or Differential Item Functioning (DIF) are central to scale construction and sound measurement. Many approaches rely on the derivation of a limiting distribution under the assumption that a certain model fits the data perfectly. Typical DIF assumptions such as the monotonicity and population independence of item functions are present even in classical test theory but are more explicitly stated when using item response theory or other latent variable models for the assessment of item fit. The work presented here provides a robust approach for DIF detection that does not assume perfect model data fit, but rather uses Tukey's concept of contaminated distributions. The approach uses robust outlier detection to flag items for which adequate model data fit cannot be established.