{"title":"CD26 CAR-T cells have attenuated mitochondrial and glycolytic metabolic profiling.","authors":"Xiaoying Zhu, Zhaodong Zhong, Fankai Meng, Ping Zou, Yong You, Qing Li, Xiaojian Zhu","doi":"10.1080/08923973.2023.2231632","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Multiple targets of chimeric antigen receptor T cells (CAR-T cells) are shared expressed by tumor cells and T cells, these self-antigens may stimulate CAR-T cells continuously during the expansion. Persistent exposure to antigens is considered to cause metabolic reprogramming of T cells and the metabolic profiling is critical in determining the cell fate and effector function of CAR-T cells. However, whether the stimulation of self-antigens during CAR-T cell generation could remodel the metabolic profiling is unclear. In this study, we aim to investigate the metabolic characteristics of CD26 CAR-T cells, which expressed CD26 antigens themselves.</p><p><strong>Methods: </strong>The mitochondrial biogenesis of CD26 and CD19 CAR-T cells during expansion was evaluated by the mitochondrial content, mitochondrial DNA copy numbers and genes involved in mitochondrial regulation. The metabolic profiling was investigated by the ATP production, mitochondrial quality and the expression of metabolism-related genes. Furthermore, we assessed the phenotypes of CAR-T cells through memory-related markers.</p><p><strong>Results: </strong>We reported that CD26 CAR-T cells had elevated mitochondrial biogenesis, ATP production and oxidative phosphorylation at early expansion stage. However, the mitochondrial biogenesis, mitochondrial quality, oxidative phosphorylation and glycolytic activity were all weakened at later expansion stage. On the contrary, CD19 CAR-T cells did not exhibit such characteristics.</p><p><strong>Conclusion: </strong>CD26 CAR-T cells showed distinctive metabolic profiling during expansion that was extremely unfavorable to cell persistence and function. These findings may provide new insights for the optimization of CD26 CAR-T cells in terms of metabolism.</p>","PeriodicalId":13420,"journal":{"name":"Immunopharmacology and Immunotoxicology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunopharmacology and Immunotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08923973.2023.2231632","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Multiple targets of chimeric antigen receptor T cells (CAR-T cells) are shared expressed by tumor cells and T cells, these self-antigens may stimulate CAR-T cells continuously during the expansion. Persistent exposure to antigens is considered to cause metabolic reprogramming of T cells and the metabolic profiling is critical in determining the cell fate and effector function of CAR-T cells. However, whether the stimulation of self-antigens during CAR-T cell generation could remodel the metabolic profiling is unclear. In this study, we aim to investigate the metabolic characteristics of CD26 CAR-T cells, which expressed CD26 antigens themselves.
Methods: The mitochondrial biogenesis of CD26 and CD19 CAR-T cells during expansion was evaluated by the mitochondrial content, mitochondrial DNA copy numbers and genes involved in mitochondrial regulation. The metabolic profiling was investigated by the ATP production, mitochondrial quality and the expression of metabolism-related genes. Furthermore, we assessed the phenotypes of CAR-T cells through memory-related markers.
Results: We reported that CD26 CAR-T cells had elevated mitochondrial biogenesis, ATP production and oxidative phosphorylation at early expansion stage. However, the mitochondrial biogenesis, mitochondrial quality, oxidative phosphorylation and glycolytic activity were all weakened at later expansion stage. On the contrary, CD19 CAR-T cells did not exhibit such characteristics.
Conclusion: CD26 CAR-T cells showed distinctive metabolic profiling during expansion that was extremely unfavorable to cell persistence and function. These findings may provide new insights for the optimization of CD26 CAR-T cells in terms of metabolism.
期刊介绍:
The journal Immunopharmacology and Immunotoxicology is devoted to pre-clinical and clinical drug discovery and development targeting the immune system. Research related to the immunoregulatory effects of various compounds, including small-molecule drugs and biologics, on immunocompetent cells and immune responses, as well as the immunotoxicity exerted by xenobiotics and drugs. Only research that describe the mechanisms of specific compounds (not extracts) is of interest to the journal.
The journal will prioritise preclinical and clinical studies on immunotherapy of disorders such as chronic inflammation, allergy, autoimmunity, cancer etc. The effects of small-drugs, vaccines and biologics against central immunological targets as well as cell-based therapy, including dendritic cell therapy, T cell adoptive transfer and stem cell therapy, are topics of particular interest. Publications pointing towards potential new drug targets within the immune system or novel technology for immunopharmacological drug development are also welcome.
With an immunoscience focus on drug development, immunotherapy and toxicology, the journal will cover areas such as infection, allergy, inflammation, tumor immunology, degenerative disorders, immunodeficiencies, neurology, atherosclerosis and more.
Immunopharmacology and Immunotoxicology will accept original manuscripts, brief communications, commentaries, mini-reviews, reviews, clinical trials and clinical cases, on the condition that the results reported are based on original, clinical, or basic research that has not been published elsewhere in any journal in any language (except in abstract form relating to paper communicated to scientific meetings and symposiums).