Follicle-innervating Aδ-low threshold mechanoreceptive neurons form receptive fields through homotypic competition.

IF 4 3区 生物学 Q1 DEVELOPMENTAL BIOLOGY
Matthew B Pomaville, Kevin M Wright
{"title":"Follicle-innervating Aδ-low threshold mechanoreceptive neurons form receptive fields through homotypic competition.","authors":"Matthew B Pomaville,&nbsp;Kevin M Wright","doi":"10.1186/s13064-023-00170-2","DOIUrl":null,"url":null,"abstract":"<p><p>The mammalian somatosensory system is comprised of multiple neuronal populations that form specialized, highly organized sensory endings in the skin. The organization of somatosensory endings is essential to their functions, yet the mechanisms which regulate this organization remain unclear. Using a combination of genetic and molecular labeling approaches, we examined the development of mouse hair follicle-innervating low-threshold mechanoreceptors (LTMRs) and explored competition for innervation targets as a mechanism involved in the patterning of their receptive fields. We show that follicle innervating neurons are present in the skin at birth and that LTMR receptive fields gradually add follicle-innervating endings during the first two postnatal weeks. Using a constitutive Bax knockout to increase the number of neurons in adult animals, we show that two LTMR subtypes have differential responses to an increase in neuronal population size: Aδ-LTMR neurons shrink their receptive fields to accommodate the increased number of neurons innervating the skin, while C-LTMR neurons do not. Our findings suggest that competition for hair follicles to innervate plays a role in the patterning and organization of follicle-innervating LTMR neurons.</p>","PeriodicalId":49764,"journal":{"name":"Neural Development","volume":"18 1","pages":"2"},"PeriodicalIF":4.0000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10134579/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13064-023-00170-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

The mammalian somatosensory system is comprised of multiple neuronal populations that form specialized, highly organized sensory endings in the skin. The organization of somatosensory endings is essential to their functions, yet the mechanisms which regulate this organization remain unclear. Using a combination of genetic and molecular labeling approaches, we examined the development of mouse hair follicle-innervating low-threshold mechanoreceptors (LTMRs) and explored competition for innervation targets as a mechanism involved in the patterning of their receptive fields. We show that follicle innervating neurons are present in the skin at birth and that LTMR receptive fields gradually add follicle-innervating endings during the first two postnatal weeks. Using a constitutive Bax knockout to increase the number of neurons in adult animals, we show that two LTMR subtypes have differential responses to an increase in neuronal population size: Aδ-LTMR neurons shrink their receptive fields to accommodate the increased number of neurons innervating the skin, while C-LTMR neurons do not. Our findings suggest that competition for hair follicles to innervate plays a role in the patterning and organization of follicle-innervating LTMR neurons.

Abstract Image

Abstract Image

Abstract Image

毛囊支配Aδ-低阈值机械感受神经元通过同型竞争形成感受野。
哺乳动物的体感系统由多个神经元群体组成,这些神经元群体在皮肤中形成专门的、高度组织化的感觉末梢。体感末梢的组织对其功能至关重要,但调节这种组织的机制尚不清楚。使用遗传和分子标记方法的组合,我们检测了小鼠毛囊神经支配低阈值机械感受器(LTMR)的发育,并探索了神经支配靶标的竞争作为其感受野模式的一种机制。我们发现,出生时皮肤中存在毛囊神经支配神经元,LTMR感受野在出生后的前两周逐渐增加毛囊神经支配末梢。使用组成型Bax敲除来增加成年动物的神经元数量,我们发现两种LTMR亚型对神经元群体大小的增加具有不同的反应:aδ-LTMR神经元收缩其感受野以适应神经支配皮肤的神经元数量的增加,而C-LTMR神经元则不收缩。我们的研究结果表明,毛囊神经支配的竞争在毛囊神经支配LTMR神经元的模式和组织中起着作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Development
Neural Development 生物-发育生物学
CiteScore
6.60
自引率
0.00%
发文量
11
审稿时长
>12 weeks
期刊介绍: Neural Development is a peer-reviewed open access, online journal, which features studies that use molecular, cellular, physiological or behavioral methods to provide novel insights into the mechanisms that underlie the formation of the nervous system. Neural Development aims to discover how the nervous system arises and acquires the abilities to sense the world and control adaptive motor output. The field includes analysis of how progenitor cells form a nervous system during embryogenesis, and how the initially formed neural circuits are shaped by experience during early postnatal life. Some studies use well-established, genetically accessible model systems, but valuable insights are also obtained from less traditional models that provide behavioral or evolutionary insights.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信