Juan Manuel Espinosa-Sanchez, Alex Gomez-Marin, Fernando de Castro
{"title":"The Importance of Cajal's and Lorente de Nó's Neuroscience to the Birth of Cybernetics.","authors":"Juan Manuel Espinosa-Sanchez, Alex Gomez-Marin, Fernando de Castro","doi":"10.1177/10738584231179932","DOIUrl":null,"url":null,"abstract":"<p><p>The beginnings of cybernetics were marked by the publication of two papers in 1943. In the first one, Rosenblueth, Wiener, and Bigelow claimed that purposeful behavior is a circular process controlled by negative feedback. In the second seminal paper, McCulloch and Pitts proposed that neurons are interconnected working as logical operators. Both articles raised human-machine analogies and mathematically formulated cognitive mechanisms. These ideas ignited the interest of von Neumann, who was developing the first stored-program computer. Thus, after a preliminary meeting in 1945, a series of meetings were held between 1946 and 1953. The role of the Spanish neurophysiologist Rafael Lorente de Nó in the beginnings of cybernetics is attested not only by his participation in the core members of these Macy conferences but also for his previous description of reverberating circuits formed by a closed chain of internuncial neurons. This was the first neurobiologic demonstration of a feedback loop. Most researchers considered the central nervous system as a mere reflex organ until then; nevertheless, he demonstrated a self-sustained central activity in the nervous system, supporting the idea of self-regulating mechanisms as a key concept not just in machines but also in the brain.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"10738584231179932"},"PeriodicalIF":3.5000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscientist","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10738584231179932","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The beginnings of cybernetics were marked by the publication of two papers in 1943. In the first one, Rosenblueth, Wiener, and Bigelow claimed that purposeful behavior is a circular process controlled by negative feedback. In the second seminal paper, McCulloch and Pitts proposed that neurons are interconnected working as logical operators. Both articles raised human-machine analogies and mathematically formulated cognitive mechanisms. These ideas ignited the interest of von Neumann, who was developing the first stored-program computer. Thus, after a preliminary meeting in 1945, a series of meetings were held between 1946 and 1953. The role of the Spanish neurophysiologist Rafael Lorente de Nó in the beginnings of cybernetics is attested not only by his participation in the core members of these Macy conferences but also for his previous description of reverberating circuits formed by a closed chain of internuncial neurons. This was the first neurobiologic demonstration of a feedback loop. Most researchers considered the central nervous system as a mere reflex organ until then; nevertheless, he demonstrated a self-sustained central activity in the nervous system, supporting the idea of self-regulating mechanisms as a key concept not just in machines but also in the brain.
1943年发表的两篇论文标志着控制论的开端。在第一个理论中,Rosenblueth、Wiener和Bigelow声称,有目的的行为是一个由负反馈控制的循环过程。在第二篇开创性的论文中,麦卡洛克和皮茨提出,神经元是相互连接的,作为逻辑运算符工作。这两篇文章都提出了人机类比和数学表述的认知机制。这些想法引起了冯·诺伊曼的兴趣,他当时正在开发第一台存储程序计算机。因此,在1945年举行初步会议之后,在1946年至1953年期间举行了一系列会议。西班牙神经生理学家Rafael Lorente de Nó在控制论初期的作用不仅体现在他参与了梅西会议的核心成员,还体现在他之前对内部神经元封闭链形成的回响回路的描述上。这是第一个反馈回路的神经生物学论证。在此之前,大多数研究人员认为中枢神经系统仅仅是一个反射器官;然而,他证明了神经系统中自我维持的中枢活动,支持了自我调节机制不仅是机器的关键概念,也是大脑的关键概念。
期刊介绍:
Edited by Stephen G. Waxman, The Neuroscientist (NRO) reviews and evaluates the noteworthy advances and key trends in molecular, cellular, developmental, behavioral systems, and cognitive neuroscience in a unique disease-relevant format. Aimed at basic neuroscientists, neurologists, neurosurgeons, and psychiatrists in research, academic, and clinical settings, The Neuroscientist reviews and updates the most important new and emerging basic and clinical neuroscience research.