{"title":"Social Pressure from a Core Group can Cause Self-Sustained Oscillations in an Epidemic Model","authors":"A. P. Baccili Jr., L. H. A. Monteiro","doi":"10.1007/s10441-023-09469-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let the individuals of a population be divided into two groups with different personal habits. The core group is associated with health risk behaviors; the non-core group avoids unhealthy activities. Assume that the infected individuals of the core group can spread a contagious disease to the whole population. Also, assume that cure does not confer immunity. Here, an epidemiological model written as a set of ordinary differential equations is proposed to investigate the infection propagation in this population. In the model, migrations between these two groups are allowed; however, the transitions from the non-core group into the core group prevail. These migrations can be either spontaneous or stimulated by social pressure. It is analytically shown that, in the scenario of spontaneous migration, the disease is either naturally eradicated or chronically persists at a constant level. In the scenario of stimulated migration, in addition to eradication and constant persistence, self-sustained oscillations in the number of sick individuals can also be found. These analytical results are illustrated by numerical simulations and discussed from a public health perspective.</p></div>","PeriodicalId":7057,"journal":{"name":"Acta Biotheoretica","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biotheoretica","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10441-023-09469-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Let the individuals of a population be divided into two groups with different personal habits. The core group is associated with health risk behaviors; the non-core group avoids unhealthy activities. Assume that the infected individuals of the core group can spread a contagious disease to the whole population. Also, assume that cure does not confer immunity. Here, an epidemiological model written as a set of ordinary differential equations is proposed to investigate the infection propagation in this population. In the model, migrations between these two groups are allowed; however, the transitions from the non-core group into the core group prevail. These migrations can be either spontaneous or stimulated by social pressure. It is analytically shown that, in the scenario of spontaneous migration, the disease is either naturally eradicated or chronically persists at a constant level. In the scenario of stimulated migration, in addition to eradication and constant persistence, self-sustained oscillations in the number of sick individuals can also be found. These analytical results are illustrated by numerical simulations and discussed from a public health perspective.
期刊介绍:
Acta Biotheoretica is devoted to the promotion of theoretical biology, encompassing mathematical biology and the philosophy of biology, paying special attention to the methodology of formation of biological theory.
Papers on all kind of biological theories are welcome. Interesting subjects include philosophy of biology, biomathematics, computational biology, genetics, ecology and morphology. The process of theory formation can be presented in verbal or mathematical form. Moreover, purely methodological papers can be devoted to the historical origins of the philosophy underlying biological theories and concepts.
Papers should contain clear statements of biological assumptions, and where applicable, a justification of their translation into mathematical form and a detailed discussion of the mathematical treatment. The connection to empirical data should be clarified.
Acta Biotheoretica also welcomes critical book reviews, short comments on previous papers and short notes directing attention to interesting new theoretical ideas.