Shrimp MultiPath™ multiplexed PCR white spot syndrome virus detection in penaeid shrimp.

IF 1.1 4区 农林科学 Q3 FISHERIES
R J Moser, S M Firestone, L M Franz, B Genz, M J Sellars
{"title":"Shrimp MultiPath™ multiplexed PCR white spot syndrome virus detection in penaeid shrimp.","authors":"R J Moser,&nbsp;S M Firestone,&nbsp;L M Franz,&nbsp;B Genz,&nbsp;M J Sellars","doi":"10.3354/dao03725","DOIUrl":null,"url":null,"abstract":"<p><p>White spot syndrome virus (WSSV), which causes white spot disease, is one of the notoriously feared infectious agents in the shrimp industry, inflicting estimated production losses world-wide of up to US$1 billion annually. Cost-effective accessible surveillance testing and targeted diagnosis are key to alerting shrimp industries and authorities worldwide early about WSSV carrier status in targeted shrimp populations. Here we present key validation pathway metrics for the Shrimp MultiPathTM (SMP) WSSV assay as part of the multi-pathogen detection platform. With superior throughput, fast turn-around time, and extremely low cost per test, the SMP WSSV assay achieves a high level of analytical sensitivity (~2.9 copies), perfect analytical specificity (~100%), and good intra- and inter-run repeatability (coefficient of variation <5%). The diagnostic metrics were estimated using Bayesian latent class analysis on data from 3 experimental shrimp populations from Latin America with distinct WSSV prevalence and yielded a diagnostic sensitivity of 95% and diagnostic specificity of 99% for SMP WSSV, which was higher than these parameters for the TaqMan quantitative PCR (qPCR) assays currently recommended by the World Organisation for Animal Health and the Commonwealth Scientific and Industrial Research Organisation. This paper additionally presents compelling data for the use of synthetic double-stranded DNA analyte spiked into pathogen-naïve shrimp tissue homogenate as a means to substitute clinical samples for assay validation pathways targeting rare pathogens. SMP WSSV shows analytical and diagnostic metrics comparable to qPCR-based assays and demonstrates fit-for-purpose performance for detection of WSSV in clinically diseased and apparently healthy animals.</p>","PeriodicalId":11252,"journal":{"name":"Diseases of aquatic organisms","volume":"153 ","pages":"95-105"},"PeriodicalIF":1.1000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diseases of aquatic organisms","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3354/dao03725","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 2

Abstract

White spot syndrome virus (WSSV), which causes white spot disease, is one of the notoriously feared infectious agents in the shrimp industry, inflicting estimated production losses world-wide of up to US$1 billion annually. Cost-effective accessible surveillance testing and targeted diagnosis are key to alerting shrimp industries and authorities worldwide early about WSSV carrier status in targeted shrimp populations. Here we present key validation pathway metrics for the Shrimp MultiPathTM (SMP) WSSV assay as part of the multi-pathogen detection platform. With superior throughput, fast turn-around time, and extremely low cost per test, the SMP WSSV assay achieves a high level of analytical sensitivity (~2.9 copies), perfect analytical specificity (~100%), and good intra- and inter-run repeatability (coefficient of variation <5%). The diagnostic metrics were estimated using Bayesian latent class analysis on data from 3 experimental shrimp populations from Latin America with distinct WSSV prevalence and yielded a diagnostic sensitivity of 95% and diagnostic specificity of 99% for SMP WSSV, which was higher than these parameters for the TaqMan quantitative PCR (qPCR) assays currently recommended by the World Organisation for Animal Health and the Commonwealth Scientific and Industrial Research Organisation. This paper additionally presents compelling data for the use of synthetic double-stranded DNA analyte spiked into pathogen-naïve shrimp tissue homogenate as a means to substitute clinical samples for assay validation pathways targeting rare pathogens. SMP WSSV shows analytical and diagnostic metrics comparable to qPCR-based assays and demonstrates fit-for-purpose performance for detection of WSSV in clinically diseased and apparently healthy animals.

对虾白斑综合征病毒的多路PCR检测。
引起白斑病的白斑综合征病毒(WSSV)是虾业中众所周知的令人恐惧的传染性病原体之一,估计每年在世界范围内造成高达10亿美元的生产损失。具有成本效益的、可获得的监测检测和有针对性的诊断是及早向全球对虾行业和有关部门通报目标对虾种群中WSSV携带状况的关键。在这里,我们提出了虾MultiPathTM (SMP) WSSV检测的关键验证途径指标,作为多病原体检测平台的一部分。SMP WSSV检测具有卓越的通量、快速的周转时间和极低的单次检测成本,具有高水平的分析灵敏度(~2.9份)、完美的分析特异性(~100%)和良好的组内和组间重复性(变异系数)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Diseases of aquatic organisms
Diseases of aquatic organisms 农林科学-兽医学
CiteScore
3.10
自引率
0.00%
发文量
53
审稿时长
8-16 weeks
期刊介绍: DAO publishes Research Articles, Reviews, and Notes, as well as Comments/Reply Comments (for details see DAO 48:161), Theme Sections and Opinion Pieces. For details consult the Guidelines for Authors. Papers may cover all forms of life - animals, plants and microorganisms - in marine, limnetic and brackish habitats. DAO''s scope includes any research focusing on diseases in aquatic organisms, specifically: -Diseases caused by coexisting organisms, e.g. viruses, bacteria, fungi, protistans, metazoans; characterization of pathogens -Diseases caused by abiotic factors (critical intensities of environmental properties, including pollution)- Diseases due to internal circumstances (innate, idiopathic, genetic)- Diseases due to proliferative disorders (neoplasms)- Disease diagnosis, treatment and prevention- Molecular aspects of diseases- Nutritional disorders- Stress and physical injuries- Epidemiology/epizootiology- Parasitology- Toxicology- Diseases of aquatic organisms affecting human health and well-being (with the focus on the aquatic organism)- Diseases as indicators of humanity''s detrimental impact on nature- Genomics, proteomics and metabolomics of disease- Immunology and disease prevention- Animal welfare- Zoonosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信