{"title":"Effects of sponge-to-sponge contact on the microbiomes of three spatially competing Caribbean coral reef species","authors":"Shelby E. Gantt, Patrick M. Erwin","doi":"10.1002/mbo3.1354","DOIUrl":null,"url":null,"abstract":"<p>Sponges perform important ecosystem functions, host diverse microbial symbiont communities (microbiomes), and have been increasing in density on Caribbean coral reefs over the last decade. Sponges compete for space in coral reef communities through both morphological and allelopathic strategies, but no studies of microbiome impacts during these interactions have been conducted. Microbiome alterations mediate spatial competition in other coral reef invertebrates and may similarly impact competitive outcomes for sponges. In this study, we characterized the microbiomes of three common Caribbean sponges (<i>Agelas tubulata</i>, <i>Iotrochota birotulata</i>, and <i>Xestospongia muta</i>) observed to naturally interact spatially in Key Largo, Florida (USA). For each species, replicate samples were collected from sponges in contact with neighbors at the site of contact (contact) and distant from the site of contact (no contact), and from sponges spatially isolated from neighbors (control). Next-generation amplicon sequencing (V4 region of 16S rRNA) revealed significant differences in microbial community structure and diversity among sponge species, but no significant effects were observed within sponge species across all contact states and competitor pairings, indicating no large community shifts in response to direct contact. At a finer scale, particular symbiont taxa (operational taxonomic units at 97% sequence identity, OTUs) were shown to decrease significantly in some interaction pairings, suggesting localized effects for specific sponge competitors. Overall, these results revealed that direct contact during spatial competition does not significantly alter microbial community composition or structure of interacting sponges, suggesting that allelopathic interactions and competitive outcomes are not mediated by microbiome damage or destabilization.</p>","PeriodicalId":18573,"journal":{"name":"MicrobiologyOpen","volume":"12 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mbo3.1354","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MicrobiologyOpen","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mbo3.1354","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sponges perform important ecosystem functions, host diverse microbial symbiont communities (microbiomes), and have been increasing in density on Caribbean coral reefs over the last decade. Sponges compete for space in coral reef communities through both morphological and allelopathic strategies, but no studies of microbiome impacts during these interactions have been conducted. Microbiome alterations mediate spatial competition in other coral reef invertebrates and may similarly impact competitive outcomes for sponges. In this study, we characterized the microbiomes of three common Caribbean sponges (Agelas tubulata, Iotrochota birotulata, and Xestospongia muta) observed to naturally interact spatially in Key Largo, Florida (USA). For each species, replicate samples were collected from sponges in contact with neighbors at the site of contact (contact) and distant from the site of contact (no contact), and from sponges spatially isolated from neighbors (control). Next-generation amplicon sequencing (V4 region of 16S rRNA) revealed significant differences in microbial community structure and diversity among sponge species, but no significant effects were observed within sponge species across all contact states and competitor pairings, indicating no large community shifts in response to direct contact. At a finer scale, particular symbiont taxa (operational taxonomic units at 97% sequence identity, OTUs) were shown to decrease significantly in some interaction pairings, suggesting localized effects for specific sponge competitors. Overall, these results revealed that direct contact during spatial competition does not significantly alter microbial community composition or structure of interacting sponges, suggesting that allelopathic interactions and competitive outcomes are not mediated by microbiome damage or destabilization.
期刊介绍:
MicrobiologyOpen is a peer reviewed, fully open access, broad-scope, and interdisciplinary journal delivering rapid decisions and fast publication of microbial science, a field which is undergoing a profound and exciting evolution in this post-genomic era.
The journal aims to serve the research community by providing a vehicle for authors wishing to publish quality research in both fundamental and applied microbiology. Our goal is to publish articles that stimulate discussion and debate, as well as add to our knowledge base and further the understanding of microbial interactions and microbial processes.
MicrobiologyOpen gives prompt and equal consideration to articles reporting theoretical, experimental, applied, and descriptive work in all aspects of bacteriology, virology, mycology and protistology, including, but not limited to:
- agriculture
- antimicrobial resistance
- astrobiology
- biochemistry
- biotechnology
- cell and molecular biology
- clinical microbiology
- computational, systems, and synthetic microbiology
- environmental science
- evolutionary biology, ecology, and systematics
- food science and technology
- genetics and genomics
- geobiology and earth science
- host-microbe interactions
- infectious diseases
- natural products discovery
- pharmaceutical and medicinal chemistry
- physiology
- plant pathology
- veterinary microbiology
We will consider submissions across unicellular and cell-cluster organisms: prokaryotes (bacteria, archaea) and eukaryotes (fungi, protists, microalgae, lichens), as well as viruses and prions infecting or interacting with microorganisms, plants and animals, including genetic, biochemical, biophysical, bioinformatic and structural analyses.
The journal features Original Articles (including full Research articles, Method articles, and Short Communications), Commentaries, Reviews, and Editorials. Original papers must report well-conducted research with conclusions supported by the data presented in the article. We also support confirmatory research and aim to work with authors to meet reviewer expectations.
MicrobiologyOpen publishes articles submitted directly to the journal and those referred from other Wiley journals.