Monica Isgut;Logan Gloster;Katherine Choi;Janani Venugopalan;May D. Wang
{"title":"Systematic Review of Advanced AI Methods for Improving Healthcare Data Quality in Post COVID-19 Era","authors":"Monica Isgut;Logan Gloster;Katherine Choi;Janani Venugopalan;May D. Wang","doi":"10.1109/RBME.2022.3216531","DOIUrl":null,"url":null,"abstract":"At the beginning of the COVID-19 pandemic, there was significant hype about the potential impact of artificial intelligence (AI) tools in combatting COVID-19 on diagnosis, prognosis, or surveillance. However, AI tools have not yet been widely successful. One of the key reason is the COVID-19 pandemic has demanded faster real-time development of AI-driven clinical and health support tools, including rapid data collection, algorithm development, validation, and deployment. However, there was not enough time for proper data quality control. Learning from the hard lessons in COVID-19, we summarize the important health data quality challenges during COVID-19 pandemic such as lack of data standardization, missing data, tabulation errors, and noise and artifact. Then we conduct a systematic investigation of computational methods that address these issues, including emerging novel advanced AI data quality control methods that achieve better data quality outcomes and, in some cases, simplify or automate the data cleaning process. We hope this article can assist healthcare community to improve health data quality going forward with novel AI development.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"16 ","pages":"53-69"},"PeriodicalIF":17.2000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/4664312/10007429/09926151.pdf","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9926151/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 7
Abstract
At the beginning of the COVID-19 pandemic, there was significant hype about the potential impact of artificial intelligence (AI) tools in combatting COVID-19 on diagnosis, prognosis, or surveillance. However, AI tools have not yet been widely successful. One of the key reason is the COVID-19 pandemic has demanded faster real-time development of AI-driven clinical and health support tools, including rapid data collection, algorithm development, validation, and deployment. However, there was not enough time for proper data quality control. Learning from the hard lessons in COVID-19, we summarize the important health data quality challenges during COVID-19 pandemic such as lack of data standardization, missing data, tabulation errors, and noise and artifact. Then we conduct a systematic investigation of computational methods that address these issues, including emerging novel advanced AI data quality control methods that achieve better data quality outcomes and, in some cases, simplify or automate the data cleaning process. We hope this article can assist healthcare community to improve health data quality going forward with novel AI development.
期刊介绍:
IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.