{"title":"The effect of renalase-derived peptides on viability of HepG₂ and PC3 cells.","authors":"V I Fedchenko, G E Morozevich, A E Medvedev","doi":"10.18097/PBMC20236903184","DOIUrl":null,"url":null,"abstract":"<p><p>Renalase (RNLS) is a recently discovered protein, which plays different roles inside and outside cells. Intracellular RNLS is a FAD-dependent oxidoreductase (EC 1.6.3.5), while extracellular RNLS lacks its N-terminal peptide, FAD cofactor, and exhibits various protective effects in a non-catalytic manner. Certain evidence exists, that plasma/serum RNLS is not an intact protein secreted into the extracellular space, and exogenous recombinant RNLS is effectively degraded during short-term incubation with human plasma samples. Some synthetic analogues of the RNLS sequence (e.g. the Desir's peptide RP-220, a 20-mer peptide corresponding to the RNLS sequence 220-239) have effects on cell survival. This suggests that RNLS-derived peptides, formed during proteolytic processing, may have own biological activity. Based on results of a recent bioinformatics analysis of potential cleavage sites of RNLS (Fedchenko et al., Medical Hypotheses, 2022) we have investigated the effect of four RNLS-derived peptides as well as RP-220 and its fragment (RP-224) on the viability of two cancer cell lines: HepG₂ (human hepatoma) and PC3 (prostate cancer). Two RNLS-derived peptides (RP-207 and RP-220) decreased the viability of HepG₂ cells in a concentration dependent manner. The most pronounced and statistically significant effect (30-40% inhibition of cell growth) was observed at 50 μM concentration of each peptide. In the experiments with PC3 cells five of six RNLS-derived peptides had a significant impact on the cell viability. RP-220 and RP-224 decreased cell viability; however, no concentration dependence of this effect was observed in the range of concentrations studied (1-50 μM). Three other RNLS-derived peptides (RP-207, RP-233, and RP-265) increased viability of PC3 cells by 20-30%, but no concentration-dependence of this effect was found. Data obtained suggest that some RNLS-derived peptides may influence the viability of various cells and manifestation and direction of the effect (increase of decrease of the cell viability) is cell-type-specific.</p>","PeriodicalId":8889,"journal":{"name":"Biomeditsinskaya khimiya","volume":"69 3","pages":"184-187"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomeditsinskaya khimiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18097/PBMC20236903184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Renalase (RNLS) is a recently discovered protein, which plays different roles inside and outside cells. Intracellular RNLS is a FAD-dependent oxidoreductase (EC 1.6.3.5), while extracellular RNLS lacks its N-terminal peptide, FAD cofactor, and exhibits various protective effects in a non-catalytic manner. Certain evidence exists, that plasma/serum RNLS is not an intact protein secreted into the extracellular space, and exogenous recombinant RNLS is effectively degraded during short-term incubation with human plasma samples. Some synthetic analogues of the RNLS sequence (e.g. the Desir's peptide RP-220, a 20-mer peptide corresponding to the RNLS sequence 220-239) have effects on cell survival. This suggests that RNLS-derived peptides, formed during proteolytic processing, may have own biological activity. Based on results of a recent bioinformatics analysis of potential cleavage sites of RNLS (Fedchenko et al., Medical Hypotheses, 2022) we have investigated the effect of four RNLS-derived peptides as well as RP-220 and its fragment (RP-224) on the viability of two cancer cell lines: HepG₂ (human hepatoma) and PC3 (prostate cancer). Two RNLS-derived peptides (RP-207 and RP-220) decreased the viability of HepG₂ cells in a concentration dependent manner. The most pronounced and statistically significant effect (30-40% inhibition of cell growth) was observed at 50 μM concentration of each peptide. In the experiments with PC3 cells five of six RNLS-derived peptides had a significant impact on the cell viability. RP-220 and RP-224 decreased cell viability; however, no concentration dependence of this effect was observed in the range of concentrations studied (1-50 μM). Three other RNLS-derived peptides (RP-207, RP-233, and RP-265) increased viability of PC3 cells by 20-30%, but no concentration-dependence of this effect was found. Data obtained suggest that some RNLS-derived peptides may influence the viability of various cells and manifestation and direction of the effect (increase of decrease of the cell viability) is cell-type-specific.
Biomeditsinskaya khimiyaBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
1.30
自引率
0.00%
发文量
49
期刊介绍:
The aim of the Russian-language journal "Biomeditsinskaya Khimiya" (Biomedical Chemistry) is to introduce the latest results obtained by scientists from Russia and other Republics of the Former Soviet Union. The Journal will cover all major areas of Biomedical chemistry, including neurochemistry, clinical chemistry, molecular biology of pathological processes, gene therapy, development of new drugs and their biochemical pharmacology, introduction and advertisement of new (biochemical) methods into experimental and clinical medicine etc. The Journal also publish review articles. All issues of journal usually contain invited reviews. Papers written in Russian contain abstract (in English).