Nicholas A Levine, Seungho Baek, Noelle Tuttle, Hunter B Alvis, Cheng-Ju Hung, Matthew L Sokoloski, Jemin Kim, Mark S Hamner, Sangwoo Lee, Brandon R Rigby, Young-Hoo Kwon
{"title":"Biomechanical effects of fatigue on lower-body extremities during a maximum effort kettlebell swing protocol.","authors":"Nicholas A Levine, Seungho Baek, Noelle Tuttle, Hunter B Alvis, Cheng-Ju Hung, Matthew L Sokoloski, Jemin Kim, Mark S Hamner, Sangwoo Lee, Brandon R Rigby, Young-Hoo Kwon","doi":"10.1080/14763141.2023.2207556","DOIUrl":null,"url":null,"abstract":"<p><p>Kettlebell training provides multiple health benefits, including the generation of power. The primary purpose of this study was to examine the kinematics and kinetics of lower-body joints during a repeated, maximum effort kettlebell swing protocol. Sixteen resistance and kettlebell swing experienced males performed 10 rounds of a kettlebell swing routine (where one round equates to 30s of swings followed by 30s of rest). Kinematic (i.e., swing duration and angular velocities) and kinetic (i.e., normalised sagittal plane ground reaction force, resultant joint moment [RJM] and power) variables were extracted for the early portion and late portion of the round. Average swing duration and the magnitude of normalised ground reaction forces (GRF) increased within rounds, while hip joint power decreased. Changes in swing duration were minimal, but consistent due to an increase in overall fatigue. An increase in the magnitude of GRF was observed at the end of rounds, which is a potential concern for injury. Hip joint power decreased primarily due to a slower angular velocity. This protocol may be an effective routine for those who are resistance trained with kettlebell swing experience, and who want to optimise power in their exercise program.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1013-1030"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2023.2207556","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Kettlebell training provides multiple health benefits, including the generation of power. The primary purpose of this study was to examine the kinematics and kinetics of lower-body joints during a repeated, maximum effort kettlebell swing protocol. Sixteen resistance and kettlebell swing experienced males performed 10 rounds of a kettlebell swing routine (where one round equates to 30s of swings followed by 30s of rest). Kinematic (i.e., swing duration and angular velocities) and kinetic (i.e., normalised sagittal plane ground reaction force, resultant joint moment [RJM] and power) variables were extracted for the early portion and late portion of the round. Average swing duration and the magnitude of normalised ground reaction forces (GRF) increased within rounds, while hip joint power decreased. Changes in swing duration were minimal, but consistent due to an increase in overall fatigue. An increase in the magnitude of GRF was observed at the end of rounds, which is a potential concern for injury. Hip joint power decreased primarily due to a slower angular velocity. This protocol may be an effective routine for those who are resistance trained with kettlebell swing experience, and who want to optimise power in their exercise program.
期刊介绍:
Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic).
Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly.
Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.