The Role of Morphological Variation in Evolutionary Robotics: Maximizing Performance and Robustness.

IF 4.6 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jonata Tyska Carvalho, Stefano Nolfi
{"title":"The Role of Morphological Variation in Evolutionary Robotics: Maximizing Performance and Robustness.","authors":"Jonata Tyska Carvalho, Stefano Nolfi","doi":"10.1162/evco_a_00336","DOIUrl":null,"url":null,"abstract":"<p><p>Exposing an evolutionary algorithm that is used to evolve robot controllers to variable conditions is necessary to obtain solutions which are robust and can cross the reality gap. However, we do not yet have methods for analyzing and understanding the impact of the varying morphological conditions which impact the evolutionary process, and therefore for choosing suitable variation ranges. By morphological conditions, we refer to the starting state of the robot, and to variations in its sensor readings during operation due to noise. In this paper, we introduce a method that permits us to measure the impact of these morphological variations and we analyze the relation between the amplitude of variations, the modality with which they are introduced, and the performance and robustness of evolving agents. Our results demonstrate that (i) the evolutionary algorithm can tolerate morphological variations which have a very high impact, (ii) variations affecting the actions of the agent are tolerated much better than variations affecting the initial state of the agent or of the environment, and (iii) improving the accuracy of the fitness measure through multiple evaluations is not always useful. Moreover, our results show that morphological variations permit generating solutions which perform better both in varying and non-varying conditions.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/evco_a_00336","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Exposing an evolutionary algorithm that is used to evolve robot controllers to variable conditions is necessary to obtain solutions which are robust and can cross the reality gap. However, we do not yet have methods for analyzing and understanding the impact of the varying morphological conditions which impact the evolutionary process, and therefore for choosing suitable variation ranges. By morphological conditions, we refer to the starting state of the robot, and to variations in its sensor readings during operation due to noise. In this paper, we introduce a method that permits us to measure the impact of these morphological variations and we analyze the relation between the amplitude of variations, the modality with which they are introduced, and the performance and robustness of evolving agents. Our results demonstrate that (i) the evolutionary algorithm can tolerate morphological variations which have a very high impact, (ii) variations affecting the actions of the agent are tolerated much better than variations affecting the initial state of the agent or of the environment, and (iii) improving the accuracy of the fitness measure through multiple evaluations is not always useful. Moreover, our results show that morphological variations permit generating solutions which perform better both in varying and non-varying conditions.

形态变异在进化机器人学中的作用:最大化性能和鲁棒性
要想获得稳健并能跨越现实鸿沟的解决方案,就必须让用于进化机器人控制器的进化算法面临各种变化条件。然而,我们还没有方法来分析和理解影响进化过程的不同形态条件的影响,从而选择合适的变化范围。所谓形态条件,指的是机器人的起始状态,以及运行过程中由于噪音导致的传感器读数变化。在本文中,我们介绍了一种可以测量这些形态变化影响的方法,并分析了变化幅度、引入变化的方式以及进化代理的性能和鲁棒性之间的关系。我们的结果表明:(i) 进化算法可以容忍影响非常大的形态变化;(ii) 与影响代理初始状态或环境的变化相比,影响代理行动的变化的容忍度要高得多;(iii) 通过多次评估提高适应度测量的准确性并不总是有用的。此外,我们的结果表明,形态变化允许生成在变化和非变化条件下都表现更好的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolutionary Computation
Evolutionary Computation 工程技术-计算机:理论方法
CiteScore
6.40
自引率
1.50%
发文量
20
审稿时长
3 months
期刊介绍: Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信