Amber J. Bernauw, Vincent Crabbe, Fraukje Ryssegem, Ronnie Willaert, Indra Bervoets, Eveline Peeters
{"title":"Molecular mechanisms of regulation by a β-alanine-responsive Lrp-type transcription factor from Acidianus hospitalis","authors":"Amber J. Bernauw, Vincent Crabbe, Fraukje Ryssegem, Ronnie Willaert, Indra Bervoets, Eveline Peeters","doi":"10.1002/mbo3.1356","DOIUrl":null,"url":null,"abstract":"<p>The leucine-responsive regulatory protein (Lrp) family of transcriptional regulators is widespread among prokaryotes and especially well-represented in archaea. It harbors members with diverse functional mechanisms and physiological roles, often linked to the regulation of amino acid metabolism. BarR is an Lrp-type regulator that is conserved in thermoacidophilic Thermoprotei belonging to the order Sulfolobales and is responsive to the non-proteinogenic amino acid β-alanine. In this work, we unravel molecular mechanisms of the <i>Acidianus hospitalis</i> BarR homolog, Ah-BarR. Using a heterologous reporter gene system in <i>Escherichia coli</i>, we demonstrate that Ah-BarR is a dual-function transcription regulator that is capable of repressing transcription of its own gene and activating transcription of an aminotransferase gene, which is divergently transcribed from a common intergenic region. Atomic force microscopy (AFM) visualization reveals a conformation in which the intergenic region appears wrapped around an octameric Ah-BarR protein. β-alanine causes small conformational changes without affecting the oligomeric state of the protein, resulting in a relief of regulation while the regulator remains bound to the DNA. This regulatory and ligand response is different from the orthologous regulators in <i>Sulfolobus acidocaldarius</i> and <i>Sulfurisphaera tokodaii</i>, which is possibly explained by a distinct binding site organization and/or by the presence of an additional C-terminal tail in Ah-BarR. By performing site-directed mutagenesis, this tail is shown to be involved in ligand-binding response.</p>","PeriodicalId":18573,"journal":{"name":"MicrobiologyOpen","volume":"12 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mbo3.1356","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MicrobiologyOpen","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mbo3.1356","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The leucine-responsive regulatory protein (Lrp) family of transcriptional regulators is widespread among prokaryotes and especially well-represented in archaea. It harbors members with diverse functional mechanisms and physiological roles, often linked to the regulation of amino acid metabolism. BarR is an Lrp-type regulator that is conserved in thermoacidophilic Thermoprotei belonging to the order Sulfolobales and is responsive to the non-proteinogenic amino acid β-alanine. In this work, we unravel molecular mechanisms of the Acidianus hospitalis BarR homolog, Ah-BarR. Using a heterologous reporter gene system in Escherichia coli, we demonstrate that Ah-BarR is a dual-function transcription regulator that is capable of repressing transcription of its own gene and activating transcription of an aminotransferase gene, which is divergently transcribed from a common intergenic region. Atomic force microscopy (AFM) visualization reveals a conformation in which the intergenic region appears wrapped around an octameric Ah-BarR protein. β-alanine causes small conformational changes without affecting the oligomeric state of the protein, resulting in a relief of regulation while the regulator remains bound to the DNA. This regulatory and ligand response is different from the orthologous regulators in Sulfolobus acidocaldarius and Sulfurisphaera tokodaii, which is possibly explained by a distinct binding site organization and/or by the presence of an additional C-terminal tail in Ah-BarR. By performing site-directed mutagenesis, this tail is shown to be involved in ligand-binding response.
期刊介绍:
MicrobiologyOpen is a peer reviewed, fully open access, broad-scope, and interdisciplinary journal delivering rapid decisions and fast publication of microbial science, a field which is undergoing a profound and exciting evolution in this post-genomic era.
The journal aims to serve the research community by providing a vehicle for authors wishing to publish quality research in both fundamental and applied microbiology. Our goal is to publish articles that stimulate discussion and debate, as well as add to our knowledge base and further the understanding of microbial interactions and microbial processes.
MicrobiologyOpen gives prompt and equal consideration to articles reporting theoretical, experimental, applied, and descriptive work in all aspects of bacteriology, virology, mycology and protistology, including, but not limited to:
- agriculture
- antimicrobial resistance
- astrobiology
- biochemistry
- biotechnology
- cell and molecular biology
- clinical microbiology
- computational, systems, and synthetic microbiology
- environmental science
- evolutionary biology, ecology, and systematics
- food science and technology
- genetics and genomics
- geobiology and earth science
- host-microbe interactions
- infectious diseases
- natural products discovery
- pharmaceutical and medicinal chemistry
- physiology
- plant pathology
- veterinary microbiology
We will consider submissions across unicellular and cell-cluster organisms: prokaryotes (bacteria, archaea) and eukaryotes (fungi, protists, microalgae, lichens), as well as viruses and prions infecting or interacting with microorganisms, plants and animals, including genetic, biochemical, biophysical, bioinformatic and structural analyses.
The journal features Original Articles (including full Research articles, Method articles, and Short Communications), Commentaries, Reviews, and Editorials. Original papers must report well-conducted research with conclusions supported by the data presented in the article. We also support confirmatory research and aim to work with authors to meet reviewer expectations.
MicrobiologyOpen publishes articles submitted directly to the journal and those referred from other Wiley journals.