An improved method for intracellular DNA (iDNA) recovery from terrestrial environments

IF 3.9 3区 生物学 Q2 MICROBIOLOGY
MicrobiologyOpen Pub Date : 2023-06-25 DOI:10.1002/mbo3.1369
Diego Medina Caro, Lucas Horstmann, Lars Ganzert, Romulo Oses, Thomas Friedl, Dirk Wagner
{"title":"An improved method for intracellular DNA (iDNA) recovery from terrestrial environments","authors":"Diego Medina Caro,&nbsp;Lucas Horstmann,&nbsp;Lars Ganzert,&nbsp;Romulo Oses,&nbsp;Thomas Friedl,&nbsp;Dirk Wagner","doi":"10.1002/mbo3.1369","DOIUrl":null,"url":null,"abstract":"<p>The simultaneous extraction of intracellular DNA (iDNA) and extracellular DNA (eDNA) can help to separate the living in situ community (represented by iDNA) from background DNA that originated both from past communities and from allochthonous sources. As iDNA and eDNA extraction protocols require separating cells from the sample matrix, their DNA yields are generally lower than direct methods that lyse the cells within the sample matrix. We, therefore, tested different buffers with and without adding a detergent mix (DM) in the extraction protocol to improve the recovery of iDNA from surface and subsurface samples that covered a variety of terrestrial environments. The combination of a highly concentrated sodium phosphate buffer plus DM significantly improved iDNA recovery for almost all tested samples. Additionally, the combination of sodium phosphate and EDTA improved iDNA recovery in most of the samples and even allowed the successful extraction of iDNA from extremely low-biomass iron-bearing rock samples taken from the deep biosphere. Based on our results, we recommend using a protocol with sodium phosphate in combination with either a DM (NaP 300 mM + DM) or EDTA (NaP + EDTA 300 mM). Furthermore, for studies that rely on the eDNA pool, we recommend using buffers solely based on sodium phosphate because the addition of EDTA or a DM resulted in a decrease in eDNA for most of the tested samples. These improvements can help reduce community bias in environmental studies and contribute to better characterizations of both modern and past ecosystems.</p>","PeriodicalId":18573,"journal":{"name":"MicrobiologyOpen","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mbo3.1369","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MicrobiologyOpen","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mbo3.1369","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The simultaneous extraction of intracellular DNA (iDNA) and extracellular DNA (eDNA) can help to separate the living in situ community (represented by iDNA) from background DNA that originated both from past communities and from allochthonous sources. As iDNA and eDNA extraction protocols require separating cells from the sample matrix, their DNA yields are generally lower than direct methods that lyse the cells within the sample matrix. We, therefore, tested different buffers with and without adding a detergent mix (DM) in the extraction protocol to improve the recovery of iDNA from surface and subsurface samples that covered a variety of terrestrial environments. The combination of a highly concentrated sodium phosphate buffer plus DM significantly improved iDNA recovery for almost all tested samples. Additionally, the combination of sodium phosphate and EDTA improved iDNA recovery in most of the samples and even allowed the successful extraction of iDNA from extremely low-biomass iron-bearing rock samples taken from the deep biosphere. Based on our results, we recommend using a protocol with sodium phosphate in combination with either a DM (NaP 300 mM + DM) or EDTA (NaP + EDTA 300 mM). Furthermore, for studies that rely on the eDNA pool, we recommend using buffers solely based on sodium phosphate because the addition of EDTA or a DM resulted in a decrease in eDNA for most of the tested samples. These improvements can help reduce community bias in environmental studies and contribute to better characterizations of both modern and past ecosystems.

Abstract Image

从陆地环境中提取细胞内DNA (iDNA)的改进方法
同时提取细胞内DNA (iDNA)和细胞外DNA (eDNA)有助于将原位生物群落(以iDNA为代表)与来自过去群落和外来来源的背景DNA分离开来。由于iDNA和eDNA提取方案需要将细胞从样品基质中分离出来,因此它们的DNA产率通常低于直接在样品基质中裂解细胞的方法。因此,我们测试了不同的缓冲液,在提取方案中添加和不添加洗涤剂混合物(DM),以提高从覆盖各种陆地环境的地表和地下样品中提取dna的回收率。高浓度磷酸钠缓冲液加DM的组合显著提高了几乎所有测试样品的dna回收率。此外,磷酸钠和EDTA的结合提高了大多数样品中dna的回收率,甚至可以从深海生物圈中极低生物量的含铁岩石样品中成功提取dna。根据我们的研究结果,我们建议使用磷酸钠联合DM (NaP 300 mM + DM)或EDTA (NaP + EDTA 300 mM)的方案。此外,对于依赖eDNA库的研究,我们建议仅使用基于磷酸钠的缓冲液,因为添加EDTA或DM会导致大多数测试样品的eDNA减少。这些改进有助于减少环境研究中的社区偏见,有助于更好地描述现代和过去的生态系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MicrobiologyOpen
MicrobiologyOpen MICROBIOLOGY-
CiteScore
8.00
自引率
0.00%
发文量
78
审稿时长
20 weeks
期刊介绍: MicrobiologyOpen is a peer reviewed, fully open access, broad-scope, and interdisciplinary journal delivering rapid decisions and fast publication of microbial science, a field which is undergoing a profound and exciting evolution in this post-genomic era. The journal aims to serve the research community by providing a vehicle for authors wishing to publish quality research in both fundamental and applied microbiology. Our goal is to publish articles that stimulate discussion and debate, as well as add to our knowledge base and further the understanding of microbial interactions and microbial processes. MicrobiologyOpen gives prompt and equal consideration to articles reporting theoretical, experimental, applied, and descriptive work in all aspects of bacteriology, virology, mycology and protistology, including, but not limited to: - agriculture - antimicrobial resistance - astrobiology - biochemistry - biotechnology - cell and molecular biology - clinical microbiology - computational, systems, and synthetic microbiology - environmental science - evolutionary biology, ecology, and systematics - food science and technology - genetics and genomics - geobiology and earth science - host-microbe interactions - infectious diseases - natural products discovery - pharmaceutical and medicinal chemistry - physiology - plant pathology - veterinary microbiology We will consider submissions across unicellular and cell-cluster organisms: prokaryotes (bacteria, archaea) and eukaryotes (fungi, protists, microalgae, lichens), as well as viruses and prions infecting or interacting with microorganisms, plants and animals, including genetic, biochemical, biophysical, bioinformatic and structural analyses. The journal features Original Articles (including full Research articles, Method articles, and Short Communications), Commentaries, Reviews, and Editorials. Original papers must report well-conducted research with conclusions supported by the data presented in the article. We also support confirmatory research and aim to work with authors to meet reviewer expectations. MicrobiologyOpen publishes articles submitted directly to the journal and those referred from other Wiley journals.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信