Manuel Adrian Riveros Escalona, Joice de Faria Poloni, Mathias J. Krause and Márcio Dorn
{"title":"Meta-analyses of host metagenomes from colorectal cancer patients reveal strong relationship between colorectal cancer-associated species†","authors":"Manuel Adrian Riveros Escalona, Joice de Faria Poloni, Mathias J. Krause and Márcio Dorn","doi":"10.1039/D3MO00021D","DOIUrl":null,"url":null,"abstract":"<p >Colorectal cancer (CRC) is one of the most common types of cancer, with many studies associating its development with changes in the gut microbiota. Recent developments in sequencing technologies and subsequent meta-analyses of gut metagenome provided a better understanding of species related to CRC tumorigenesis. Still, the importance of high-importance taxonomic singletons (<em>i.e.</em> species highly associated with a given condition but observed only in the minority of datasets) and the species interactions and co-occurrence across cohorts need further exploration. It has been shown that the gut metagenome presents a high functional redundancy, meaning that species interactions could mitigate the absence of any given species. In a CRC framework, this implies that species co-occurrence could play a role in tumorigenesis, even if CRC-associated species show low abundance. We propose to evaluate the prevalence of microbial species in tumor by initially analyzing each dataset individually and subsequently intersecting the results for differentially abundant species between CRC and healthy samples. We then identify metabolic pathways from these species based on KEGG orthologs, highlighting metabolic pathways associated with CRC. Our results indicate seven species with high prevalence across all projects and with high association to CRC, including the genus <em>Bacteroides</em>, <em>Enterocloster</em> and <em>Prevotella</em>. Finally, we show that CRC is also characterized by the co-occurrence of species that do not present significant differential abundance, but have been described in the literature as potential CRC biomarkers. These results indicate that between-species interactions could also play a role in CRC tumorigenesis.</p>","PeriodicalId":19065,"journal":{"name":"Molecular omics","volume":" 5","pages":" 429-444"},"PeriodicalIF":3.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular omics","FirstCategoryId":"99","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/mo/d3mo00021d","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Colorectal cancer (CRC) is one of the most common types of cancer, with many studies associating its development with changes in the gut microbiota. Recent developments in sequencing technologies and subsequent meta-analyses of gut metagenome provided a better understanding of species related to CRC tumorigenesis. Still, the importance of high-importance taxonomic singletons (i.e. species highly associated with a given condition but observed only in the minority of datasets) and the species interactions and co-occurrence across cohorts need further exploration. It has been shown that the gut metagenome presents a high functional redundancy, meaning that species interactions could mitigate the absence of any given species. In a CRC framework, this implies that species co-occurrence could play a role in tumorigenesis, even if CRC-associated species show low abundance. We propose to evaluate the prevalence of microbial species in tumor by initially analyzing each dataset individually and subsequently intersecting the results for differentially abundant species between CRC and healthy samples. We then identify metabolic pathways from these species based on KEGG orthologs, highlighting metabolic pathways associated with CRC. Our results indicate seven species with high prevalence across all projects and with high association to CRC, including the genus Bacteroides, Enterocloster and Prevotella. Finally, we show that CRC is also characterized by the co-occurrence of species that do not present significant differential abundance, but have been described in the literature as potential CRC biomarkers. These results indicate that between-species interactions could also play a role in CRC tumorigenesis.
Molecular omicsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
5.40
自引率
3.40%
发文量
91
期刊介绍:
Molecular Omics publishes high-quality research from across the -omics sciences.
Topics include, but are not limited to:
-omics studies to gain mechanistic insight into biological processes – for example, determining the mode of action of a drug or the basis of a particular phenotype, such as drought tolerance
-omics studies for clinical applications with validation, such as finding biomarkers for diagnostics or potential new drug targets
-omics studies looking at the sub-cellular make-up of cells – for example, the subcellular localisation of certain proteins or post-translational modifications or new imaging techniques
-studies presenting new methods and tools to support omics studies, including new spectroscopic/chromatographic techniques, chip-based/array technologies and new classification/data analysis techniques. New methods should be proven and demonstrate an advance in the field.
Molecular Omics only accepts articles of high importance and interest that provide significant new insight into important chemical or biological problems. This could be fundamental research that significantly increases understanding or research that demonstrates clear functional benefits.
Papers reporting new results that could be routinely predicted, do not show a significant improvement over known research, or are of interest only to the specialist in the area are not suitable for publication in Molecular Omics.