{"title":"A new classification method for diagnosing COVID-19 pneumonia based on joint CNN features of chest X-ray images and parallel pyramid MLP-mixer module.","authors":"Yiwen Liu, Wenyu Xing, Mingbo Zhao, Mingquan Lin","doi":"10.1007/s00521-023-08604-y","DOIUrl":null,"url":null,"abstract":"<p><p>During the past three years, the coronavirus disease 2019 (COVID-19) has swept the world. The rapid and accurate recognition of covid-19 pneumonia are ,therefore, of great importance. To handle this problem, we propose a new pipeline of deep learning framework for diagnosing COVID-19 pneumonia via chest X-ray images from normal, COVID-19, and other pneumonia patients. In detail, the self-trained YOLO-v4 network was first used to locate and segment the thoracic region, and the output images were scaled to the same size. Subsequently, the pre-trained convolutional neural network was adopted to extract the features of X-ray images from 13 convolutional layers, which were fused with the original image to form a 14-dimensional image matrix. It was then put into three parallel pyramid multi-layer perceptron (MLP)-Mixer modules for comprehensive feature extraction through spatial fusion and channel fusion based on different scales so as to grasp more extensive feature correlation. Finally, by combining all image features from the 14-channel output, the classification task was achieved using two fully connected layers as well as Softmax classifier for classification. Extensive simulations based on a total of 4099 chest X-ray images were conducted to verify the effectiveness of the proposed method. Experimental results indicated that our proposed method can achieve the best performance in almost all cases, which is good for auxiliary diagnosis of COVID-19 and has great clinical application potential.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":" ","pages":"1-13"},"PeriodicalIF":4.5000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147369/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-023-08604-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
During the past three years, the coronavirus disease 2019 (COVID-19) has swept the world. The rapid and accurate recognition of covid-19 pneumonia are ,therefore, of great importance. To handle this problem, we propose a new pipeline of deep learning framework for diagnosing COVID-19 pneumonia via chest X-ray images from normal, COVID-19, and other pneumonia patients. In detail, the self-trained YOLO-v4 network was first used to locate and segment the thoracic region, and the output images were scaled to the same size. Subsequently, the pre-trained convolutional neural network was adopted to extract the features of X-ray images from 13 convolutional layers, which were fused with the original image to form a 14-dimensional image matrix. It was then put into three parallel pyramid multi-layer perceptron (MLP)-Mixer modules for comprehensive feature extraction through spatial fusion and channel fusion based on different scales so as to grasp more extensive feature correlation. Finally, by combining all image features from the 14-channel output, the classification task was achieved using two fully connected layers as well as Softmax classifier for classification. Extensive simulations based on a total of 4099 chest X-ray images were conducted to verify the effectiveness of the proposed method. Experimental results indicated that our proposed method can achieve the best performance in almost all cases, which is good for auxiliary diagnosis of COVID-19 and has great clinical application potential.
期刊介绍:
Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems.
All items relevant to building practical systems are within its scope, including but not limited to:
-adaptive computing-
algorithms-
applicable neural networks theory-
applied statistics-
architectures-
artificial intelligence-
benchmarks-
case histories of innovative applications-
fuzzy logic-
genetic algorithms-
hardware implementations-
hybrid intelligent systems-
intelligent agents-
intelligent control systems-
intelligent diagnostics-
intelligent forecasting-
machine learning-
neural networks-
neuro-fuzzy systems-
pattern recognition-
performance measures-
self-learning systems-
software simulations-
supervised and unsupervised learning methods-
system engineering and integration.
Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.