Javad Mozaffari, Abdollah Amirkhani, Shahriar B Shokouhi
{"title":"A survey on deep learning models for detection of COVID-19.","authors":"Javad Mozaffari, Abdollah Amirkhani, Shahriar B Shokouhi","doi":"10.1007/s00521-023-08683-x","DOIUrl":null,"url":null,"abstract":"<p><p>The spread of the COVID-19 started back in 2019; and so far, more than 4 million people around the world have lost their lives to this deadly virus and its variants. In view of the high transmissibility of the Corona virus, which has turned this disease into a global pandemic, artificial intelligence can be employed as an effective tool for an earlier detection and treatment of this illness. In this review paper, we evaluate the performance of the deep learning models in processing the X-Ray and CT-Scan images of the Corona patients' lungs and describe the changes made to these models in order to enhance their Corona detection accuracy. To this end, we introduce the famous deep learning models such as VGGNet, GoogleNet and ResNet and after reviewing the research works in which these models have been used for the detection of COVID-19, we compare the performances of the newer models such as DenseNet, CapsNet, MobileNet and EfficientNet. We then present the deep learning techniques of GAN, transfer learning, and data augmentation and examine the statistics of using these techniques. Here, we also describe the datasets introduced since the onset of the COVID-19. These datasets contain the lung images of Corona patients, healthy individuals, and the patients with non-Corona pulmonary diseases. Lastly, we elaborate on the existing challenges in the use of artificial intelligence for COVID-19 detection and the prospective trends of using this method in similar situations and conditions.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s00521-023-08683-x.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224665/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-023-08683-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2
Abstract
The spread of the COVID-19 started back in 2019; and so far, more than 4 million people around the world have lost their lives to this deadly virus and its variants. In view of the high transmissibility of the Corona virus, which has turned this disease into a global pandemic, artificial intelligence can be employed as an effective tool for an earlier detection and treatment of this illness. In this review paper, we evaluate the performance of the deep learning models in processing the X-Ray and CT-Scan images of the Corona patients' lungs and describe the changes made to these models in order to enhance their Corona detection accuracy. To this end, we introduce the famous deep learning models such as VGGNet, GoogleNet and ResNet and after reviewing the research works in which these models have been used for the detection of COVID-19, we compare the performances of the newer models such as DenseNet, CapsNet, MobileNet and EfficientNet. We then present the deep learning techniques of GAN, transfer learning, and data augmentation and examine the statistics of using these techniques. Here, we also describe the datasets introduced since the onset of the COVID-19. These datasets contain the lung images of Corona patients, healthy individuals, and the patients with non-Corona pulmonary diseases. Lastly, we elaborate on the existing challenges in the use of artificial intelligence for COVID-19 detection and the prospective trends of using this method in similar situations and conditions.
Supplementary information: The online version contains supplementary material available at 10.1007/s00521-023-08683-x.
期刊介绍:
Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems.
All items relevant to building practical systems are within its scope, including but not limited to:
-adaptive computing-
algorithms-
applicable neural networks theory-
applied statistics-
architectures-
artificial intelligence-
benchmarks-
case histories of innovative applications-
fuzzy logic-
genetic algorithms-
hardware implementations-
hybrid intelligent systems-
intelligent agents-
intelligent control systems-
intelligent diagnostics-
intelligent forecasting-
machine learning-
neural networks-
neuro-fuzzy systems-
pattern recognition-
performance measures-
self-learning systems-
software simulations-
supervised and unsupervised learning methods-
system engineering and integration.
Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.