Microbe-Plant Interactions Targeting Metal Stress: New Dimensions for Bioremediation Applications.

IF 6.8 Q1 TOXICOLOGY
Baljeet Singh Saharan, Twinkle Chaudhary, Balwan Singh Mandal, Dharmender Kumar, Ravinder Kumar, Pardeep Kumar Sadh, Joginder Singh Duhan
{"title":"Microbe-Plant Interactions Targeting Metal Stress: New Dimensions for Bioremediation Applications.","authors":"Baljeet Singh Saharan,&nbsp;Twinkle Chaudhary,&nbsp;Balwan Singh Mandal,&nbsp;Dharmender Kumar,&nbsp;Ravinder Kumar,&nbsp;Pardeep Kumar Sadh,&nbsp;Joginder Singh Duhan","doi":"10.3390/jox13020019","DOIUrl":null,"url":null,"abstract":"<p><p>In the age of industrialization, numerous non-biodegradable pollutants like plastics, HMs, polychlorinated biphenyls, and various agrochemicals are a serious concern. These harmful toxic compounds pose a serious threat to food security because they enter the food chain through agricultural land and water. Physical and chemical techniques are used to remove HMs from contaminated soil. Microbial-metal interaction, a novel but underutilized strategy, might be used to lessen the stress caused by metals on plants. For reclaiming areas with high levels of heavy metal contamination, bioremediation is effective and environmentally friendly. In this study, the mechanism of action of endophytic bacteria that promote plant growth and survival in polluted soils-known as heavy metal-tolerant plant growth-promoting (HMT-PGP) microorganisms-and their function in the control of plant metal stress are examined. Numerous bacterial species, such as Arthrobacter, Bacillus, Burkholderia, Pseudomonas, and Stenotrophomonas, as well as a few fungi, such as Mucor, Talaromyces, Trichoderma, and Archaea, such as Natrialba and Haloferax, have also been identified as potent bioresources for biological clean-up. In this study, we additionally emphasize the role of plant growth-promoting bacteria (PGPB) in supporting the economical and environmentally friendly bioremediation of heavy hazardous metals. This study also emphasizes future potential and constraints, integrated metabolomics approaches, and the use of nanoparticles in microbial bioremediation for HMs.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"13 2","pages":"252-269"},"PeriodicalIF":6.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304886/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox13020019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the age of industrialization, numerous non-biodegradable pollutants like plastics, HMs, polychlorinated biphenyls, and various agrochemicals are a serious concern. These harmful toxic compounds pose a serious threat to food security because they enter the food chain through agricultural land and water. Physical and chemical techniques are used to remove HMs from contaminated soil. Microbial-metal interaction, a novel but underutilized strategy, might be used to lessen the stress caused by metals on plants. For reclaiming areas with high levels of heavy metal contamination, bioremediation is effective and environmentally friendly. In this study, the mechanism of action of endophytic bacteria that promote plant growth and survival in polluted soils-known as heavy metal-tolerant plant growth-promoting (HMT-PGP) microorganisms-and their function in the control of plant metal stress are examined. Numerous bacterial species, such as Arthrobacter, Bacillus, Burkholderia, Pseudomonas, and Stenotrophomonas, as well as a few fungi, such as Mucor, Talaromyces, Trichoderma, and Archaea, such as Natrialba and Haloferax, have also been identified as potent bioresources for biological clean-up. In this study, we additionally emphasize the role of plant growth-promoting bacteria (PGPB) in supporting the economical and environmentally friendly bioremediation of heavy hazardous metals. This study also emphasizes future potential and constraints, integrated metabolomics approaches, and the use of nanoparticles in microbial bioremediation for HMs.

Abstract Image

Abstract Image

Abstract Image

针对金属胁迫的微生物-植物相互作用:生物修复应用的新维度。
在工业化时代,许多不可生物降解的污染物,如塑料,HMs,多氯联苯和各种农用化学品是一个严重的问题。这些有害的有毒化合物通过农田和水源进入食物链,对粮食安全构成严重威胁。采用物理和化学技术从污染土壤中去除微生物。微生物-金属相互作用是一种新的但尚未充分利用的策略,可以用来减轻金属对植物造成的胁迫。对于重金属污染严重的地区,生物修复是有效和环保的。本文对污染土壤中促进植物生长和生存的内生细菌——耐重金属植物促生长微生物(HMT-PGP)的作用机制及其在植物重金属胁迫控制中的作用进行了研究。许多细菌种类,如节杆菌、芽孢杆菌、伯克氏菌、假单胞菌和窄养单胞菌,以及一些真菌,如毛霉、Talaromyces、木霉和古生菌,如Natrialba和Haloferax,也已被确定为生物清洁的有效生物资源。在本研究中,我们还强调了植物生长促进菌(plant growth-promoting bacteria, PGPB)在支持经济环保的重金属生物修复中的作用。本研究还强调了未来的潜力和限制,综合代谢组学方法,以及纳米颗粒在微生物生物修复中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
1.70%
发文量
21
审稿时长
10 weeks
期刊介绍: The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信