Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes.

IF 14.1 1区 生物学 Q1 MYCOLOGY
L G Nagy, P J Vonk, M Künzler, C Földi, M Virágh, R A Ohm, F Hennicke, B Bálint, Á Csernetics, B Hegedüs, Z Hou, X B Liu, S Nan, M Pareek, N Sahu, B Szathmári, T Varga, H Wu, X Yang, Z Merényi
{"title":"Lessons on fruiting body morphogenesis from genomes and transcriptomes of <i>Agaricomycetes</i>.","authors":"L G Nagy,&nbsp;P J Vonk,&nbsp;M Künzler,&nbsp;C Földi,&nbsp;M Virágh,&nbsp;R A Ohm,&nbsp;F Hennicke,&nbsp;B Bálint,&nbsp;Á Csernetics,&nbsp;B Hegedüs,&nbsp;Z Hou,&nbsp;X B Liu,&nbsp;S Nan,&nbsp;M Pareek,&nbsp;N Sahu,&nbsp;B Szathmári,&nbsp;T Varga,&nbsp;H Wu,&nbsp;X Yang,&nbsp;Z Merényi","doi":"10.3114/sim.2022.104.01","DOIUrl":null,"url":null,"abstract":"<p><p>Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (<i>Agaricomycetes</i>) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of <i>Coprinopsis cinerea</i>, and their orthologs in <i>Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus</i>, and <i>Schizophyllum commune</i>, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the <i>Agaricomycetes</i>. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. <b>Citation:</b> Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of <i>Agaricomycetes. Studies in Mycology</i> <b>104</b>: 1-85. doi: 10.3114/sim.2022.104.01.</p>","PeriodicalId":22036,"journal":{"name":"Studies in Mycology","volume":null,"pages":null},"PeriodicalIF":14.1000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10282164/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Mycology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3114/sim.2022.104.01","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.

Abstract Image

Abstract Image

Abstract Image

菌丝体基因组和转录组对子实体形态发生的启示。
成菇真菌的子实体(孢子囊、孢子或担子瘤)是真菌产生的最复杂的结构之一。与营养菌丝不同,子实体的生长是决定性的,并遵循遗传编码的发育程序,协调它们的生长、组织分化和性孢子形成。尽管经过一个多世纪的研究,我们对子实体形态发生的分子细节的了解仍然有限,缺乏对这一复杂过程的遗传学综合。在本文中,我们旨在全面鉴定与子实体形态发生有关的保守基因,并对功能不明确的基因提出新的功能假设。根据这一分析结果,我们报道了921个保守的发育表达基因家族,其中只有几十个先前被报道参与子实体发育。基于文献数据、保守表达模式和功能注释,我们对这些基因家族在子实体发育中的潜在作用提出了假设,得到了迄今为止最完整的子实体形态发生分子过程描述。我们讨论了与结果、分化、生长、细胞表面和细胞壁、防御、转录调控以及信号转导有关的基因。基于这些数据,我们得出了子实体发育的一般模型,其中包括早期的增殖阶段,主要涉及制定蘑菇体计划(通过细胞分裂和分化),以及通过细胞扩增以及减数分裂事件和产孢的第二阶段生长。我们总共讨论了1 480个铜opsis cinerea的基因,以及它们在双孢蘑菇(Agaricus bisporus)、绿环菌(Cyclocybe aegerita)、蜜环菌(Armillaria ostoyae)、耳虫(Auriculariopsis ampla)、双色乳酸菌(Laccaria bicolor)、香菇(Lentinula edodes)、香菇(lentus tigrinus)、肯特菌(Mycena kentingensis)、黄孢平革菌(Phanerochaete chrysporium)、平菇(Pleurotus ostreatus)和裂叶菌(Schizophyllum commune)中的同源基因,为这些物种基因组中约10%的基因提供了功能假设。虽然这些基因作用的实验证据需要在未来建立,但我们的数据为指导真菌中结果相关基因的功能分析提供了路线图。我们预计,这里提出的基因纲要,结合功能基因组学方法的发展,将有助于揭示真菌中最壮观的多细胞发育过程之一的遗传基础。引用本文:Nagy LG, Vonk PJ, k zler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, csertics Á, heged S B,侯志,刘小斌,Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T,吴伟,杨旭,mersamnyi Z(2023)。菌丝体基因组和转录组对子实体形态发生的启示。真菌学研究104:1-85。doi: 10.3114 / sim.2022.104.01。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Mycology
Studies in Mycology 生物-真菌学
CiteScore
35.60
自引率
3.00%
发文量
7
期刊介绍: The international journal Studies in Mycology focuses on advancing the understanding of filamentous fungi, yeasts, and various aspects of mycology. It publishes comprehensive systematic monographs as well as topical issues covering a wide range of subjects including biotechnology, ecology, molecular biology, pathology, and systematics. This Open-Access journal offers unrestricted access to its content. Each issue of Studies in Mycology consists of around 5 to 6 papers, either in the form of monographs or special focused topics. Unlike traditional length restrictions, the journal encourages submissions of manuscripts with a minimum of 50 A4 pages in print. This ensures a thorough exploration and presentation of the research findings, maximizing the depth of the published work.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信