{"title":"Multi-robot cooperative autonomous exploration via task allocation in terrestrial environments.","authors":"Xiangda Yan, Zhe Zeng, Keyan He, Huajie Hong","doi":"10.3389/fnbot.2023.1179033","DOIUrl":null,"url":null,"abstract":"<p><p>Cooperative autonomous exploration is a challenging task for multi-robot systems, which can cover larger areas in a shorter time or path length. Using multiple mobile robots for cooperative exploration of unknown environments can be more efficient than a single robot, but there are also many difficulties in multi-robot cooperative autonomous exploration. The key to successful multi-robot cooperative autonomous exploration is effective coordination between the robots. This paper designs a multi-robot cooperative autonomous exploration strategy for exploration tasks. Additionally, considering the fact that mobile robots are inevitably subject to failure in harsh conditions, we propose a self-healing cooperative autonomous exploration method that can recover from robot failures.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"17 ","pages":"1179033"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10277487/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2023.1179033","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Cooperative autonomous exploration is a challenging task for multi-robot systems, which can cover larger areas in a shorter time or path length. Using multiple mobile robots for cooperative exploration of unknown environments can be more efficient than a single robot, but there are also many difficulties in multi-robot cooperative autonomous exploration. The key to successful multi-robot cooperative autonomous exploration is effective coordination between the robots. This paper designs a multi-robot cooperative autonomous exploration strategy for exploration tasks. Additionally, considering the fact that mobile robots are inevitably subject to failure in harsh conditions, we propose a self-healing cooperative autonomous exploration method that can recover from robot failures.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.