Protein structure prediction with energy minimization and deep learning approaches.

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Juan Luis Filgueiras, Daniel Varela, José Santos
{"title":"Protein structure prediction with energy minimization and deep learning approaches.","authors":"Juan Luis Filgueiras,&nbsp;Daniel Varela,&nbsp;José Santos","doi":"10.1007/s11047-023-09943-4","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper we discuss the advantages and problems of two alternatives for ab initio protein structure prediction. On one hand, recent approaches based on deep learning, which have significantly improved prediction results for a wide variety of proteins, are discussed. On the other hand, methods based on protein conformational energy minimization and with different search strategies are analyzed. In this latter case, our methods based on a memetic combination between differential evolution and the fragment replacement technique are included, incorporating also the possibility of niching in the evolutionary search. Different proteins have been used to analyze the pros and cons in both approaches, proposing possibilities of integration of both alternatives.</p>","PeriodicalId":49783,"journal":{"name":"Natural Computing","volume":" ","pages":"1-12"},"PeriodicalIF":1.7000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165305/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11047-023-09943-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we discuss the advantages and problems of two alternatives for ab initio protein structure prediction. On one hand, recent approaches based on deep learning, which have significantly improved prediction results for a wide variety of proteins, are discussed. On the other hand, methods based on protein conformational energy minimization and with different search strategies are analyzed. In this latter case, our methods based on a memetic combination between differential evolution and the fragment replacement technique are included, incorporating also the possibility of niching in the evolutionary search. Different proteins have been used to analyze the pros and cons in both approaches, proposing possibilities of integration of both alternatives.

Abstract Image

利用能量最小化和深度学习方法进行蛋白质结构预测。
在本文中,我们讨论了两种从头计算蛋白质结构预测方法的优点和问题。一方面,讨论了最近基于深度学习的方法,这些方法显著改善了对各种蛋白质的预测结果。另一方面,分析了基于蛋白质构象能量最小化和不同搜索策略的方法。在后一种情况下,我们基于差异进化和片段替换技术之间的模因组合的方法也被包括在内,在进化搜索中也加入了小生境的可能性。已经使用不同的蛋白质来分析这两种方法的优缺点,提出了整合这两种替代方案的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Natural Computing
Natural Computing Computer Science-Computer Science Applications
CiteScore
4.40
自引率
4.80%
发文量
49
审稿时长
3 months
期刊介绍: The journal is soliciting papers on all aspects of natural computing. Because of the interdisciplinary character of the journal a special effort will be made to solicit survey, review, and tutorial papers which would make research trends in a given subarea more accessible to the broad audience of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信