Solving time delay fractional optimal control problems via a Gudermannian neural network and convergence results.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Farzaneh Kheyrinataj, Alireza Nazemi, Marziyeh Mortezaee
{"title":"Solving time delay fractional optimal control problems via a Gudermannian neural network and convergence results.","authors":"Farzaneh Kheyrinataj,&nbsp;Alireza Nazemi,&nbsp;Marziyeh Mortezaee","doi":"10.1080/0954898X.2023.2173817","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose a Gudermannian neural network scheme to solve optimal control problems of fractional-order system with delays in state and control. The fractional derivative is described in the Caputo sense. The problem is first transformed, using a Padé approximation, to one without a time-delayed argument. We try to approximate the solution of the Hamiltonian conditions based on the Pontryagin minimum principle. For this purpose, we use trial solutions for the states, Lagrange multipliers, and control functions where these trial solutions are constructed by using two-layered perceptron. We then minimize the error function using an unconstrained optimization scheme where weight and biases associated with all neurons are unknown. Some numerical examples are given to illustrate the effectiveness of the proposed method.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":"34 1-2","pages":"122-150"},"PeriodicalIF":1.1000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2023.2173817","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a Gudermannian neural network scheme to solve optimal control problems of fractional-order system with delays in state and control. The fractional derivative is described in the Caputo sense. The problem is first transformed, using a Padé approximation, to one without a time-delayed argument. We try to approximate the solution of the Hamiltonian conditions based on the Pontryagin minimum principle. For this purpose, we use trial solutions for the states, Lagrange multipliers, and control functions where these trial solutions are constructed by using two-layered perceptron. We then minimize the error function using an unconstrained optimization scheme where weight and biases associated with all neurons are unknown. Some numerical examples are given to illustrate the effectiveness of the proposed method.

利用古德曼神经网络求解时滞分数阶最优控制问题并得到收敛结果。
本文提出了一种古德曼神经网络方案,用于解决具有状态和控制时滞的分数阶系统的最优控制问题。分数阶导数是用卡普托意义来描述的。这个问题首先被转换成一个没有时滞参数的问题,使用pad近似。我们尝试用庞特里亚金最小值原理来近似哈密顿条件的解。为此,我们对状态、拉格朗日乘子和控制函数使用尝试解,其中这些尝试解是通过使用双层感知器构建的。然后我们使用无约束优化方案最小化误差函数,其中与所有神经元相关的权重和偏差是未知的。数值算例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信