{"title":"Solving time delay fractional optimal control problems via a Gudermannian neural network and convergence results.","authors":"Farzaneh Kheyrinataj, Alireza Nazemi, Marziyeh Mortezaee","doi":"10.1080/0954898X.2023.2173817","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose a Gudermannian neural network scheme to solve optimal control problems of fractional-order system with delays in state and control. The fractional derivative is described in the Caputo sense. The problem is first transformed, using a Padé approximation, to one without a time-delayed argument. We try to approximate the solution of the Hamiltonian conditions based on the Pontryagin minimum principle. For this purpose, we use trial solutions for the states, Lagrange multipliers, and control functions where these trial solutions are constructed by using two-layered perceptron. We then minimize the error function using an unconstrained optimization scheme where weight and biases associated with all neurons are unknown. Some numerical examples are given to illustrate the effectiveness of the proposed method.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":"34 1-2","pages":"122-150"},"PeriodicalIF":1.1000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2023.2173817","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose a Gudermannian neural network scheme to solve optimal control problems of fractional-order system with delays in state and control. The fractional derivative is described in the Caputo sense. The problem is first transformed, using a Padé approximation, to one without a time-delayed argument. We try to approximate the solution of the Hamiltonian conditions based on the Pontryagin minimum principle. For this purpose, we use trial solutions for the states, Lagrange multipliers, and control functions where these trial solutions are constructed by using two-layered perceptron. We then minimize the error function using an unconstrained optimization scheme where weight and biases associated with all neurons are unknown. Some numerical examples are given to illustrate the effectiveness of the proposed method.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.