Joseph O Okeme, Jeremy P Koelmel, Emily Johnson, Elizabeth Z Lin, Dong Gao, Krystal J Godri Pollitt
{"title":"Wearable Passive Samplers for Assessing Environmental Exposure to Organic Chemicals: Current Approaches and Future Directions.","authors":"Joseph O Okeme, Jeremy P Koelmel, Emily Johnson, Elizabeth Z Lin, Dong Gao, Krystal J Godri Pollitt","doi":"10.1007/s40572-023-00392-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>We are continuously exposed to dynamic mixtures of airborne contaminants that vary by location. Understanding the compositional diversity of these complex mixtures and the levels to which we are each exposed requires comprehensive exposure assessment. This comprehensive analysis is often lacking in population-based studies due to logistic and analytical challenges associated with traditional measurement approaches involving active air sampling and chemical-by-chemical analysis. The objective of this review is to provide an overview of wearable passive samplers as alternative tools to active samplers in environmental health research. The review highlights the advances and challenges in using wearable passive samplers for assessing personal exposure to organic chemicals and further presents a framework to enable quantitative measurements of exposure and expanded use of this monitoring approach to the population scale.</p><p><strong>Recent findings: </strong>Overall, wearable passive samplers are promising tools for assessing personal exposure to environmental contaminants, evident by the increased adoption and use of silicone-based devices in recent years. When combined with high throughput chemical analysis, these exposure assessment tools present opportunities for advancing our ability to assess personal exposures to complex mixtures. Most designs of wearable passive samplers used for assessing exposure to semi-volatile organic chemicals are currently uncalibrated, thus, are mostly used for qualitative research. The challenge with using wearable samplers for quantitative exposure assessment mostly lies with the inherent complexity in calibrating these wearable devices. Questions remain regarding how they perform under various conditions and the uncertainty of exposure estimates. As popularity of these samplers grows, it is critical to understand the uptake kinetics of chemicals and the different environmental and meteorological conditions that can introduce variability. Wearable passive samplers enable evaluation of exposure to hundreds of chemicals. The review presents the state-of-the-art of technology for assessing personal exposure to environmental chemicals. As more studies calibrate wearable samplers, these tools present promise for quantitatively assessing exposure at both the individual and population levels.</p>","PeriodicalId":10775,"journal":{"name":"Current Environmental Health Reports","volume":"10 2","pages":"84-98"},"PeriodicalIF":7.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Environmental Health Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40572-023-00392-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 2
Abstract
Purpose of review: We are continuously exposed to dynamic mixtures of airborne contaminants that vary by location. Understanding the compositional diversity of these complex mixtures and the levels to which we are each exposed requires comprehensive exposure assessment. This comprehensive analysis is often lacking in population-based studies due to logistic and analytical challenges associated with traditional measurement approaches involving active air sampling and chemical-by-chemical analysis. The objective of this review is to provide an overview of wearable passive samplers as alternative tools to active samplers in environmental health research. The review highlights the advances and challenges in using wearable passive samplers for assessing personal exposure to organic chemicals and further presents a framework to enable quantitative measurements of exposure and expanded use of this monitoring approach to the population scale.
Recent findings: Overall, wearable passive samplers are promising tools for assessing personal exposure to environmental contaminants, evident by the increased adoption and use of silicone-based devices in recent years. When combined with high throughput chemical analysis, these exposure assessment tools present opportunities for advancing our ability to assess personal exposures to complex mixtures. Most designs of wearable passive samplers used for assessing exposure to semi-volatile organic chemicals are currently uncalibrated, thus, are mostly used for qualitative research. The challenge with using wearable samplers for quantitative exposure assessment mostly lies with the inherent complexity in calibrating these wearable devices. Questions remain regarding how they perform under various conditions and the uncertainty of exposure estimates. As popularity of these samplers grows, it is critical to understand the uptake kinetics of chemicals and the different environmental and meteorological conditions that can introduce variability. Wearable passive samplers enable evaluation of exposure to hundreds of chemicals. The review presents the state-of-the-art of technology for assessing personal exposure to environmental chemicals. As more studies calibrate wearable samplers, these tools present promise for quantitatively assessing exposure at both the individual and population levels.
期刊介绍:
Current Environmental Health Reports provides up-to-date expert reviews in environmental health. The goal is to evaluate and synthesize original research in all disciplines relevant for environmental health sciences, including basic research, clinical research, epidemiology, and environmental policy.